We thank the editorialists Tiziomalos, and Badimon et al. for their comments on our work (Bowe et al.) (1).

Seminal findings from the Framingham Heart Study established that low levels of high density lipoprotein cholesterol (HDL-C) are associated with increased risk of cardiovascular outcomes and death. The findings lent plausibility to the hypothesis that higher levels of HDL-C would be associated with improved cardiovascular outcomes and reduced mortality. This hypothesis was never thoroughly tested in that none of the prior studies—which involved few thousand patients, where very few cohort participants had very high HDL-C levels—were powered enough to rigorously address this clinically relevant question. It was also assumed that raising HDL-C levels will lead to improved cardiovascular outcomes and reduced mortality. The assumed veracity of the hypothesis powered the undertaking of multiple randomized controlled trials including those testing niacin, and those involving cholesterol ester transfer protein (CETP) inhibitors. These pharmaceutical intervention studies successfully resulted in increased HDL-C levels, but did not result in amelioration of cardiovascular outcomes or mortality (2-4).

Recent experimental evidence suggests that HDL-C exhibits a biphase effect (at low and high concentrations); where at high concentrations, HDL-C paradoxically promoted senescence and abrogated endothelial progenitor cell tube formation and angiogenesis. The findings indicate that the protective effect of HDL-C is vitiating at higher concentrations (5). Recent Mendelian randomization analyses show that genetic mechanisms that raise plasma HDL-C do not result in lowering the risk of myocardial infarction (6).

In a large epidemiologic study involving 1.7 million United States Veterans followed for over 9 years (16 million person-years) we evaluated the relationship between HDL-C and risk of death; we found that low HDL-C is associated with increased risk of death, and unexpectedly that high HDL-C is also associated with increased risk of death. The relationship between HDL-C and risk of mortality exhibited a U-shaped association where risk of death is increased at low and high HDL-C levels (1). The findings were also consistent in studies where we examined the relationship of HDL-C and risk of incident kidney disease and its progression to end stage renal disease (likely a result of microvascular injury and disease), where again the salutary effect of high HDL-C was reversed at high concentrations and risk relationship was U-shaped (7). Ko and colleagues recently reported results consistent with ours, and also showed increased cardiovascular and non-cardiovascular mortality at both low and high HDL-C levels; they noted that HDL-C is does not represent a cardiovascular specific risk factor given that it is also associated with non-cardiovascular outcomes (8).

Taken together, the constellation of findings suggests that HDL-C is a non-specific and heavily confounded measure, and represents a poor marker for cardiovascular
outcomes. It should not be regarded as an independent
modifiable risk factor for cardiovascular disease, and is
an unreliable target for pharmaceutical interventions.
Moving beyond quantitative HDL-C levels to a qualitative
assessment of HDL-C size, composition, functional capacity
or HDL-C subclasses may be promising (9,10).

The promise of big data in medicine

Another important lesson we learned is that foundational
studies such as the Framingham Heart Studies and others
significantly advanced our understanding of cardiovascular
health and disease, and specifically elucidated the
relationship between cholesterol parameters (and of
particular relevance here: HDL-Cholesterol) and clinical
outcomes. However, these studies are limited in that the
number of patients in these longitudinal cohorts is relatively
small compared to what could be obtained using a Big
Data approach. The recent epidemiologic reports which
unearthed the finding that high HDL-C is associated with
increased risk of death leveraged the power of Big Data to
examine the relationship across the full range of HDL-C
values spectrum. This approach of using the powerful
lens of Big Data to re-examine perennial questions, and
challenge prior knowledge and prevailing assumptions holds
significant promise and –in our opinion- will yield a more
a more nuanced understanding of health and disease in the
decades to come.

Acknowledgements

None.

Footnote

Conflicts of Interest: The author has no conflicts of interest to
declare.

References

Cholesterol and the Risk of All-Cause Mortality among
of print].
2. Barter P, Gotto AM, LaRosa JC, et al. HDL cholesterol,
very low levels of LDL cholesterol, and cardiovascular
dalcetrapib in patients with a recent acute coronary
torcetrapib in patients at high risk for coronary events. N
5. Huang CY, Lin FY, Shih CM, et al. Moderate to
high concentrations of high-density lipoprotein from
healthy subjects paradoxically impair human endothelial
progenitor cells and related angiogenesis by activating
Rho-associated kinase pathways. Arterioscler Thromb
Plasma HDL cholesterol and risk of myocardial
infarction: a mendelian randomisation study. Lancet
7. Bowe B, Xie Y, Xian H, et al. Low levels of high-density
lipoprotein cholesterol increase the risk of incident kidney
Lipoprotein Cholesterol and Cause-Specific Mortality
in Individuals Without Previous Cardiovascular
Conditions: The CANHEART Study. J Am Coll Cardiol
9. de Boer IH, Brunzell JD. HDL in CKD: how good is the
10. Müller-Deile J, Schmitt R. HDL in CKD: not protective

Cite this article as: Al-Aly Z. High density lipoprotein
cholesterol and risk of death. J Thorac Dis 2016;8(12):E1780-
E1781. doi: 10.21037/jtd.2016.12.65