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Introduction

Diabetes mellitus (DM) and small vessel (SV) disease are 
two major predictors of adverse outcome in patients treated 
by percutaneous coronary intervention (PCI) (1,2). These 
two conditions may frequently coexist, increasing even 
more the risk of adverse events after revascularization. 
Despite their undisputed benefit, current metallic drug-
eluting stents (DES) remain associated with an increased 
incidence of adverse events when used in these settings. 
Moreover, metallic DES are associated with several 
drawbacks due to the persistence of their permanent struts 
in the vessel wall, such as: impaired vasomotion, vessel 
caging, jailing of collateral branches, and late lumen catch-
up. To overcome these limitations, bioresorbable scaffold 
(BRS) technology has been recently developed, with the 

aim of providing, through the resorption process, the 
restoration of vascular physiology, positive remodelling 
of lumen and plaque shielding without precluding the 
possibility for late surgical revascularization (3). These 
potential advantages of BRS are particularly attractive in 
complex coronary artery disease (CAD), especially when 
distal or diffusely diseased coronary segments are involved 
and treated by PCI (4). First-generation BRS, largely 
represented by the poly-l-lactic acid (PLLA) ABSORB 
(Abbott Vascular, Santa Clara, CA, USA), demonstrated to 
be non inferior to contemporary metallic DES in terms of 
preventing 1-year restenosis (5). However, a trend towards 
increased early and midterm stent thrombosis (ST) was 
observed, especially when the scaffolds were used in off-
label situations (e.g., implantation of oversized scaffold in 
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vessel with diameter below 2.25 mm) (Ellis S.G. Everolimus-
eluting Bioresorbable Vascular Scaffolds in Patients with 
Coronary Artery Disease: ABSORB III Trial 2-Year Results, 
American College of Cardiology, 66th Annual Scientific 
Session, March 19, 2017, Washington DC; 4). Longer 
follow-up data have shown a two-fold increase in the target 
lesion failure (TLF) rate in the BRS arm of several trials 
(the 3-year ABSORB II and 2-year JAPAN and ABSORB 
III trials), largely driven by increased rates of target-vessel 
myocardial infarction (TV-MI) (6,7) (Ellis S.G. Everolimus-
eluting Bioresorbable Vascular Scaffolds in Patients with 
Coronary Artery Disease: ABSORB III Trial 2-Year Results, 
American College of Cardiology, 66th Annual Scientific 
Session, March 19, 2017, Washington DC). More recently, 
two other BRS received CE mark approval and became 
available for clinical use in Europe (DESolve from Elixir 
Medical, Sunnyvale, California, USA, and Magmaris from 
Biotronic, Bülach, Switzerland), but extensive outcome data 
are still lacking (8,9).

This review aims at summarizing current evidence on 
BRS in the subsets of DM and SV disease. 

BRSs and DM

DM is a chronic metabolic disorder affecting up to 
10–14% of the population in Western countries. DM is a 
major risk factor for the development of coronary artery 
atherosclerosis and affects around one-third of patients 
requiring PCI (10). Moreover, DM is one of the strongest 
among patient-related predictors of adverse outcome after 
percutaneous revascularization (1). Indeed, diabetic patients 
show increased platelet reactivity, inflammatory response 
and endothelial dysfunction (11). Moreover, insulin and 
insulin-like growth factors may accelerate smooth muscle 
cell proliferation after stenting by promoting stimulatory 
action on vascular smooth muscle cells (12). Even with the 
use of contemporary metallic DES, the presence of DM 
remains associated with increased risk of subsequent events, 
including myocardial infarction (MI), ST, restenosis and 
mortality (13-15). To note, clinical outcomes of diabetic 
patients treated by PCI are influenced by the severity 
of DM as assessed by the need of insulin treatment and 
by glycemic control (i.e., fasting glucose or glycated 
hemoglobin levels) (16,17).

Role of BRS technology in diabetic patients

The use of BRS in diabetic patients with CAD is particularly 

attractive for the following reasons: (I) current metallic 
DES still have higher risk of device-related adverse events 
in diabetic patients versus non-diabetics (18); (II) diabetic 
patients present frequently with diffuse coronary disease, a 
condition that might greatly benefit from successful vessel 
healing over long coronary segments; (III) patients with 
DM may require more frequently repeat percutaneous or 
surgical revascularizations, which might be facilitated by 
the complete resorption of previously implanted coronary 
stents. However, each of these theoretical advantages 
remains to be prospectically investigated. Moreover, 
DM is frequently associated to atherosclerosis of small 
coronary vessels, an angiographic setting that is emerging as 
particularly challenging for current BRSs.

Robust evidence related to the outcomes of BRS use 
in the context of DM is still lacking, since no dedicated 
randomized trial versus a metallic stent has been completed 
in this specific subset. Moreover, available outcome data 
in diabetics are limited to a single device type (Absorb 
BVS) and to mid-term follow-up (4). Several clinical trials 
and registries on the Absorb BVS have included diabetic 
patients, in variable proportions (Table 1). In a comparative 
analysis of 551 patients of ABSORB cohort B and ABSORB 
EXTEND, similar comparable outcomes were observed 
between diabetics and non-diabetics treated with Absorb 
BVS in term of 1-year TLF (3.7% vs. 5.1%, P=0.64) and 
definite/probable ST (0.7% in both groups) (19). To date, 
the largest study in patients with DM treated with Absorb 
BVS is a pre-specified, pooled analysis by Kereiakes et al. (20) 
including the ABSORB II, III, JAPAN trials and ABSORB 
EXTEND registry (22-25). In this study comprising 754 
diabetic patients, the 1-year TLF rate was 8.3% vs. a pre-
specified performance goal of 12.7% (P=0.0001). TLF 
were mainly driven by the 6.5% rate of target vessel MI. 
The 1-year rate of definite/probable ST was 2.3%, and the 
majority (1.3%) of these events occurred within 30 days. 
In this study, increasing age, insulin treatment and smaller 
pre-procedure reference vessel diameter (RVD) were 
independent predictors of 1-year TLF. When stratifying 
outcomes according to baseline RVD, diabetic patients with 
RVD <2.25 mm had two-times the incidence of TLF and 
TV-MI and three-times the incidence of ST compared to 
those with RVD ≥2.25 mm. The major impact of SVs with 
RVD <2.25 mm in diabetics is further emphasized by the 
fact that—limited to the three randomized trials included in 
this analysis—the 1-year TLF and device thrombosis rates 
for Absorb BVS vs. Xience were similar among patients 
with baseline QCA ≥ RVD 2.25 mm (1-year TLF 6.6% vs. 
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6.5%, P= NS; device thrombosis 1.3% vs. 0.4%, P= NS). 
It should be noted that the importance of RVD in most 
BRS trials is derived from analyses of QCA-based vessel 
sizing. However, QCA has important limitations in vessel 
sizing as compared to intravascular imaging modalities. In 
particular, QCA may prevent a reliable determination of 
native vessel size particularly when diffuse atherosclerosis 
is present and non-diseased segments are absent, thus 
leading to systematic RVD underestimation. Moreover, 
QCA-based estimation of the RVD is influenced by several 
procedural variables, such as the distance from X-ray tube 
and the vessel of interest (26). Therefore, a vessel sizing 
based on intravascular imaging modalities such as IVUS 
and OCT has been highly recommended when implanting 
BRS in complex/diffuse disease, which is a common feature 
of the diabetic subset (4). Related to the impact of insulin 
treatment, although insulin-dependent patients were less 
than one-third, they accounted for more than 50% of the 
scaffold thrombosis events. Conversely, the non insulin-
dependent subgroup of this cohort had a 1-year rate of 
scaffold thrombosis of 1.5%, similar to both the 1.5% rate 
observed for the overall Absorb patients enrolled into the 
ABSORB III trial and the 1.4% rate observed in all Xience-
treated diabetic patients in the ABSORB III trial (27). 
However, the weight of these findings by Kereiakes et al. 
is limited by several aspects: firstly, this analysis involved a 
population of patients with non-complex stable ischemic 
heart disease or stabilized acute coronary syndromes; 
secondly, for most investigators involved in the included 
trials this was the first-time clinical use of a BRS, with the 
inherent implications of the learning curve for an optimal 

implantation technique; thirdly, the study is limited to 
1-year outcomes when the BRS resorption process is 
partial; most importantly, this analysis did not allow any 
direct comparison between the BRS and a metallic stent 
control. In this regard, a previous propensity-matched study 
by Muramatsu et al. investigated the clinical outcomes of 
patients with DM treated with either the Absorb BVS or 
the Xience EES by pooling individual data from ABSORB 
Cohort B and Absorb EXTEND with those of SPIRIT 
FIRST, II, III and IV studies (19). In this analysis, similar 
rates of 1-year device-oriented composite endpoint 
(DOCE) (3.9% vs. 6.4%, P=0.3) and device thrombosis 
were observed between the Absorb BVS (n=102 patients) 
and the Xience EES (n=172 patients). Similar results were 
observed when considering only the subgroup of insulin-
dependent patients. Of note, in this study most patients 
of the propensity matched population had a rather low 
angiographic complexity, as indicated by the low prevalence 
of multivessel disease (25% in the BVS group) and of 
type B2/C lesions (39% in the BVS group). In the single-
center experience by Wiebe et al. (21) in 120 patients in an  
“all-comers” setting including STEMI cases complex lesions 
(B2/C 60.6%), TLF rate was 8.9% and scaffold thrombosis 
was 2.7%, comparable to previous real-world cohort treated 
with 2nd generation DES. In a meta-analysis (5) comprising 
3,389 non-diabetic and diabetic patients enrolled in four 
clinical trials (ABSORB II, ABSORB Japan, ABSORB 
China, ABSORB III) and randomized to receive a BVS or a 
Xience EES, DM was an independent predictor of TLF (OR 
1.56, P=0.002), even if 1-year TLF was comparable between 
groups and the subgroup analysis showed a trend towards 

Table 1 Overview of dedicated analyses on the use of Absorb BVS in patients with diabetes mellitus

Author Original studies included
Number of diabetic 

patients treated with BVS
ACS (%) F-up (months) TLF (%)* ST (%)

Muramatsu et al. (19) ABSORB cohort B, Absorb 
EXTEND 

102 33.8 12 3.7 1.0

Kereiakes et al. (20) ABSORB II, ABSORB III, 
ABSORB JAPAN, ABSORB 

EXTEND

754 N/A 12 8.3 2.3

Wiebe et al. (21) Single center study 120 49.3 12 7.6 2.7

Stone et al. (5) ABSORB II, ABSORB Japan, 
ABSORB China, ABSORB III

3,389 32.0 12 6.6 1.3

*, composite of death, myocardial infarction, target lesion revascularization. ACS, acute coronary syndrome; F-up, follow-up; TLF, target 
lesion failure; ST, stent thrombosis; N/A, not applicable.
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superiority of Xience in non-diabetics but not in diabetics. 
The ongoing SUGAR-EVE (EverolimuS-ElUtinG 
BioresorbAble VasculaR Scaffolds vErsus EVerolimus-
Eluting Stents in Patients With DM, NCT02632292) 
and the COMPARE ABSORB (Bioresorbable Scaffold 
vs. Xience Metallic Stent for Prevention of Restenosis 
in Patients at High Risk of Restenosis, NCT02486068) 
are expected to provide further data on clinical outcomes 
in this specific subset. A dedicated diabetic sub-study of 
the COMPARE ABSORB trial will also investigate the 
potential benefit of Absorb BVS versus Xience in terms of 
IVUS-assessed plaque regression behind the stent struts at 
5-year follow-up. 

BRS technology for SV CAD

SV CAD is a frequently encountered angiographic 
finding, involving up to 20-30% of patients referred to the 
catheterization laboratory (28). Through literature, the 
atherosclerotic involvement of small coronary arteries has 
been defined in different ways, based on heterogeneous 
threshold values of RVD (frequently less than 2.75 mm, 
sometimes <2.5 or 3.0 mm) or stent diameters (usually less 
than 2.5 mm) (29). Several authors suggested the term of 
very SV (VSV) for those coronary segments with a RVD 
equal or lower than 2.25 mm (2).

Despite the great technical evolution of revascularization 
interventions, the optimal treatment of SV disease is still 
debated, as the risk of adverse outcomes bear an inverse 
correlation with vessel diameter (30). These patients are 
also predisposed to higher rate of clinical risk factors, 
and complex patterns of CAD including diabetes, renal 
failure and diffuse lesions (31). Compared to larger vessels, 
CABG is limited by high rates of technical failures and 
PCI is associated with an increased risk of restenosis and 
ST (2,32). Mechanisms suggested to explain that poorer 
outcomes include: (I) a high degree of vessels stretched 
and injury; (II) a small post-procedural lumen area; (III) 
a high metal density in case of metallic platform stent 
(MPS) implantation; (IV) a lower acute luminal gain with 
similar late loss when compared to large-vessel PCI and, 
consecutively; (V) a low threshold of cardiac ischemia due 
to neointimal hyperplasia (33-35). Currently, the cobalt-
chromium everolimus-eluting stent (CoCr-EES) showed 
a better event-free survival rates in the setting of small 
coronary vessels compared to others MPSs, because of a 

low late loss, a stent platform with low strut thickness and 
high conformability to vessel (36). However, little is known 
regarding newer technologies as thin strut bioresorbable 
polymer stent, drug-eluting balloon (DEB) and the emerging 
bioresorbable devices (37-39). Given the relatively high 
restenosis rates even after last generation DES implantation, 
increasing interest has been focused on treatment of  
de novo small CAD with DEB. The 2-year follow-up of the 
BELLO (Balloon Elution and Late Loss Optimization) trial 
showed acceptable adverse events rate after treatment with 
IN.PACT Falcon™ paclitaxel DEB (Medtronic, Inc., Santa 
Rosa, California, USA) in coronary vessel with RVD lower 
than 2.8 mm, without evidence of late catch-up phenomenon 
requiring repeat intervention (40).

Role of BRS technology in SV disease

Outcome data in this setting are limited to the Absorb BVS 
device. The structural limitations of the current generation 
of Absorb BVS, like the strut thickness, the larger 
profile and the reduced deliverability, limit an extensive 
application of this technology in complex subsets, as that 
of SV CAD (41). To date, studies evaluating the clinical 
outcomes of this device in the setting of SV CAD are scant 
and mainly deriving from registries (Table 2, 42-48).

One of the first analysis from the ABSORB cohort B 
study showed at 2-year intravascular imaging follow-up 
a favourable balance between acute luminal gain and late 
lumen enlargement in vessels with lower RVD (<2.5 mm) (40). 
Accordingly, authors observed similar long-term clinical 
outcomes comparing the subset of patients with those with 
larger treated vessels in terms of MACE (7.3% vs. 10.2%, 
P=0.7) and ST (0% in both groups). Nevertheless, this 
analysis included simple lesions and, at the time when this 
study was conducted, only 3.0 mm BVS was available.

Tanaka et al. (43) assessed the performance of the 
Absorb BRS within a retrospective registry of 2 Italian 
high-volume centres (60 enrolled patients), comparing 
patients with 2.5 mm implanted scaffolds versus >2.5 mm. 
At 12 months follow-up, this registry showed a numerical, 
but not statistically significant, lower rate of TLR in 
smaller BRS patients (1.9% vs. 7.3%, P=0.2), despite a 
higher angiographic complexity. Similarly, a study by  
Wiebe et al. (44) in 101 “real world” patients found a similar 
1-year TLR rate between the two BRS groups (15.7% in 
BRS =2.5 and 12.3% in BRS >2.5; P=0.5). In the BVS-
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Save Registry, the 12 months DOCE and the definite ST 
rates in the SV disease group (defined as a RVD <2.75 mm) 
were respectively 9% and 1.5% (44). As a matter of fact, 
the authors found a slightly higher occurrence of device 
failure if compared to studies related to last generation 
EES, but lower if compared with earlier devices (29,36). 
Notwithstanding, these results were limited by several 
aspects: their observational nature, the lack of a direct 
comparison with current CoCr-EES standard stent and the 
relatively small number of included patients. More recently, 
the outcomes data of bigger real-world patient populations 
were presented (Table 2, 46-48). The sub-study of the Italian 
RAI registry is the largest one focused on the interplay 
between BRS, vessel size, and outcome of patients enrolled 
in a prospective, multicenter registry (46). Compared 
to the previous studies, the BRS use was associated with 
lower DOCE and POCE rate, with a clinically driven 
target lesion and vessel revascularization of less than 4%, 
without statistically significant difference between small vs. 
non-SV group, at a median follow-up time of 14 months. 
However, authors found a numerically higher rate of mid-
term scaffold thrombosis in SV patients that was late and 
very late and mainly driven by the VSV group. Other 
independent predictors of ST included DM and depressed 
ejection fraction (<45%) as already shown by others (49). 
Actually, recent findings based on available data from 
randomized BRS trials and observational registries showed 
that a meticulous implantation technique and selection of 
appropriate patients are required to optimize outcomes (50). 
Of note, the BRS implantation technique used in the RAI 
registry (mandatory pre-dilatation and strongly suggested 
post-dilatation) may have contributed to the lower TLF and 
early ST rates compared to previous BRS studies (51,52). 

After the publication of the 1-year results of the 
ABSORB III trial, FDA representatives discouraged 
implanting the Absorb BRS in coronary vessels with RVD 
below 2.5 mm because of increased risk of TLF and ST (24). 
In that study, SV lesion (RVD <2.63 mm at QCA) treated 
by BRS trended to be associated with an increased rate of 
target lesion revascularization compared to Xience EES 
use (9.8% vs. 5.7%, P=0.09). Moreover, the 2-year results 
of the ABSORB III study showed a significant increase in 
TLF in the Absorb BVS group compared to controls (HR 
1.42, 95% CI, 1.04–1.94, P=0.03) that became insignificant 

after cutting out patients with the smallest-caliber target 
vessels (HR 1.35, 95% CI, 0.93–1.96, P=0.12) (Ellis S.G. 
Everolimus-eluting Bioresorbable Vascular Scaffolds in 
Patients with Coronary Artery Disease: ABSORB III Trial 
2-Year Results, American College of Cardiology, 66th 
Annual Scientific Session, March 19, 2017, Washington 
DC). Part of this problem might be explained by bulky 
struts of scaffold (150 μm × 190 μm), limiting the effective 
flow area in small coronary lumens. Furthermore, in small 
coronary arteries subset, operators cannot comply with the 
correct sizing implantation rule, especially in case of RVD 
lower than 2.25 mm. As a matter of fact, Ishibashi et al. 
demonstrated that implantation of an oversized Absorb 
scaffold in a relatively SV may be associated with a higher 
risk of adverse events at long-term follow-up (53). The 
device expansion below nominal diameter could cause 
side-branch occlusion or microthrombus formation due to 
denser polymer surface pattern and a larger strut footprint. 
High pressure scaffold implantation might also play a role in 
strut embedment and ultimately influence the flow dynamic 
in the scaffolded segment. However, the oversized scaffold 
may produce vessel microperforation or dissection (53).

Accordingly, with a published letter, FDA reaffirmed the 
need for a meticulous attention to procedural details, advising 
health care providers of the observed Absorb BVS increased 
risk of events (Figure 1). Moreover, the manufacturer 
warned about scaffold deployment in the SV subset, strongly 
recommended the use of on-line QCA or intravascular 
imaging to confirm appropriate vessel sizing (RVD >2.5mm) 
and the need for adequate duration of dual-antiplatelet 
therapy. In Europe, even though the CE mark approval 
remains in place, the manufacturer restricted the Absorb 
BVS use only in centers participating in clinical registries. 
The ongoing Compare Absorb Trial will help to assess the 
role of PCI with Absorb BRS compared to Xience EES in 
patients at high-risk for restenosis due to clinical profile or 
coronary lesion complexity, including patients with target 
lesion RVD between 2.25–2.75 mm (54). Notwithstanding, 
the presence of complex lesion subset involving potentially 
BRS-unfavourable segments does not necessarily mean that 
the concept of “transient scaffolding” should be set aside. 
Accordingly, a metal free hybrid strategy of BRS for larger 
size vessels and DEB for smaller sized vessels could be 
considered respecting adequate implantation strategy (55).



S946 Masiero et al. A systematic review of current available evidences

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2017;9(Suppl 9):S940-S949jtd.amegroups.com

1-year ST rate Enrolled patients with at least one VSV

%
 o

f e
nr

ol
le

d 
pa

tie
nt

s 
w

ith
 R

V
D

 <
2.

25
 m

m
S

tent Throm
bosis 1-year rate

ABSORB II
N=330

(BRS arm)

ABSORB III
N=1252

(BRS arm)

ABSORB JAPAN
N=266

(BRS arm)

ABSORB IV
N=1415
(Pooled)

ABSROB CHINA
N=237

(BRS arm)

P of correlation=0.19

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

20

18

16

14

12

10

8

6

4

2

0

Figure 1 Very small vessel (VSV) treatment and stent thrombosis (ST) rate at 1-year follow-up across BRS RCTs (5, Ellis S.G. Everolimus-
eluting Bioresorbable Vascular Scaffolds in Patients with Coronary Artery Disease: ABSORB III Trial 2-Year Results, American College of 
Cardiology, 66th Annual Scientific Session, March 19, 2017, Washington DC). A trend towards a lower rate of device ST in studies with 
lower prevalence of VSV was found (Pearson coefficient of correlation: 0.69, 95% CI, 0.48–0.98, P=0.19). BRS, bioresorbable scaffold; RCT, 
randomised control trial.
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