Introduction
Surgery involving the main airways requires optimal exposure and maintenance of adequate oxygenation and ventilation. For the vast majority of airway surgical cases, conventional cross-table ventilation with periodic apneic phases, is sufficient to provide excellent technical surgery with minimal morbidity. Jet ventilation is a reasonable alternative that is used predominately for high resections involving the larynx. For complex surgical cases and in patients with near total occlusion of the airways, extracorporeal life support (ECLS) is a good and safe option to support the patient’s respiratory functions during a complex resection. Today, a variety of ECLS devices and modes are available. The purpose of this review is to give an overview of the current application of ECLS in airway surgery. In addition, a practical guide on when and how ECLS should be implemented is also provided.

History
Cardiopulmonary bypass (CPB) was the first clinical application of extracorporeal support. It dates back to 1953 when John Gibbon was able to repair an atrial septal defect in an 18-year-old woman. During this case, the patient’s cardiopulmonary function was completely replaced for a short period of time. It was not until the early 1960s when the first reports on CPB in airway surgery were published. In 1961, Woods et al. successfully resected a recurrent adenoid cystic carcinoma (ACC) of the distal trachea (1). Two similar cases were consecutively published by Adkins et al. (2) and Nissen et al. (3). Interestingly, all those early cases were advanced stage ACC patients requiring a complete replacement of their cardiopulmonary function for a repair. A major problem during the early phase of CPB was the direct damage to blood cells caused by bubble oxygenators, which subsequently led to multi-organ dysfunction when used for more than a few hours. This problem was mitigated when small gas exchange membranes were interposed between the blood and the oxygen tank. The technology significantly evolved as new membranes were developed and evolved from silicone to polypropylene (PP) and eventually to new generation...
polymethylpentene (PMP). This development became known as extracorporeal membrane oxygenation (ECMO) and was slowly implemented in the 70s and 80s to treat acute respiratory failure in infants (4). The first described use of ECMO in airway surgery was published by Walker et al. in 1992 (5). They reported a case of a 2.5 kg infant suffering from a congenital distal airway stenosis. The child was successfully treated by a segmental resection and end-to-end anastomosis. Peripheral ECMO support was chosen over a traditional CPB because it did not require median sternotomy, required less heparin, and facilitated the anticipated postoperative ECLS prolongation. Shortly thereafter, the first series of cases using ECMO for intraoperative ventilatory support in pediatric airway patients was published by Connolly et al. (6). Since that time, ECMO has gradually found its way into the everyday clinical practice of large thoracic centers and is currently routinely applied in lung transplant and ARDS patients. In addition, it has also proven to be a powerful tool in the armamentarium of extended airway surgery (Table 1).

Available ECLS configurations

Venous-venous (v-v) ECMO

Veno-venous (v-v) ECMO can be considered the gold standard if ECLS is needed during airway surgery. It can provide complete support of pulmonary function with effective CO₂ removal and oxygenation. The main advantage of v-v support over veno-arterial (v-a) ECMO is the lower risk of vascular complications that may be associated with arterial cannulation such as bleeding, arterial (pseudo-)aneurysms, limb ischemia and embolic events (41,42). The typical and simplest cannulation configuration is a femoral-jugular approach with two cannulas.

Single-cannula v-v ECMO

The development of double-lumen cannulas enabled single vessel access instead of a femoro-femoral or a femoro-jugular insertion. It is a good alternative to the standard two-cannula approach. With the growing experience of using these cannulas in ARDS and lung transplant patients, they have also been adopted in airway surgery (43,44). The placement of the cannula in the right atrium requires fluoroscopic (preferably) or TEE guidance (45). Its first successful use in airway surgery was published by the Toronto group in 2015. In their reported case, the cannula supplied stable respiratory support and facilitated tumor debridement of a near occluding tracheal squamous cell cancer (25).

Veno-arterial (v-a) ECMO

The main advantage of a v-a over a v-v ECMO is the hemodynamic support that can be provided. This is especially important during emergency settings, when an airway occlusion has already led to severe hemodynamic compromise. In addition, it results in a more stable support during complex airway reconstructions, most notably when the heart needs to be retracted to improve visualization. It is considered more invasive than v-v ECMO and is associated with a higher incidence of neurologic events (infarction, microemboli, hemorrhage) as well as peripheral vascular complications (dissection, limb ischemia, aneurysm). Moreover, femoro-femoral v-a ECMO sometimes fails to provide adequate central oxygenation, especially in patients with a high cardiac output (46).

Cardiopulmonary bypass

Although some centers still use conventional CPB for support during airway surgery, several disadvantages limit its use. In contrast to v-a ECMO, which also provides hemodynamic stability, CPB requires higher levels of anticoagulation and uses a venous reservoir with an air-blood interface. This is thought to contribute to the higher incidence of coagulopathy and systemic inflammatory reactions, especially during longer pump runs (47). However, CPB has the advantage of using a cardiotomy suction, which enables the rescue of large blood volumes during major bleeding, although this is a rare situation in airway surgery.

Novalung assist

Pumpless lung assistance devices like the Novalung are based on the development of low transmembrane pressure gradient oxygenators. These devices are interposed between the femoral artery and vein and can effectively remove CO₂. However, they have a lower capacity to oxygenate compared to ECMO devices. Novalung membranes alone cannot provide hemodynamic support without a pump, and their gas exchange capacity is dependent on a stable cardiac output (9). To the best of our knowledge, there is only one published case on the use of a Novalung during airway
<table>
<thead>
<tr>
<th>Author</th>
<th>Journal</th>
<th>Year</th>
<th>Pt #</th>
<th>Indication</th>
<th>Intervention</th>
<th>Support mode</th>
<th>Cannulation site</th>
<th>Induction type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ishikawa et al. (7)</td>
<td>Surg Today</td>
<td>1995</td>
<td>2</td>
<td>ADC tracheal, post TBC</td>
<td>Rigid bronchoscopy debridement and stent</td>
<td>v/v ECMO</td>
<td>Femoro-femoral</td>
<td></td>
</tr>
<tr>
<td>Horita et al. (8)</td>
<td>Thorac Cardiovasc Surg</td>
<td>1996</td>
<td>2</td>
<td>SCC lung</td>
<td>Carinal resection</td>
<td>v/v ECMO</td>
<td>Femoro-femoral</td>
<td></td>
</tr>
<tr>
<td>Walles et al. (9)</td>
<td>J Thorac Cardiovasc Surg</td>
<td>2008</td>
<td>1</td>
<td>TEF</td>
<td>Repair with bioartificial patch</td>
<td>Novalung</td>
<td>Femoro-femoral</td>
<td></td>
</tr>
<tr>
<td>Chen (10)</td>
<td>J Bronchology Interv Pulmonol</td>
<td>2009</td>
<td>1</td>
<td>Stent-in-stent</td>
<td>Removal of stent—rigid bronchoscopy</td>
<td>v/a ECMO</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Lei et al. (11)</td>
<td>J Cardiothorac Surg</td>
<td>2010</td>
<td>1</td>
<td>ADC lung</td>
<td>Left pneumonectomy</td>
<td>v/a ECMO</td>
<td>Femoro-femoral</td>
<td>Awake induction</td>
</tr>
<tr>
<td>Holliday et al. (12)</td>
<td>Crit Care Resusc</td>
<td>2010</td>
<td>1</td>
<td>Foreign body—food bolus</td>
<td>Rigid bronchoscopy and removal</td>
<td>v/v ECMO</td>
<td>Femoro-femoral</td>
<td></td>
</tr>
<tr>
<td>Gourdin et al. (13)</td>
<td>J Cardiothorac Vasc Anesth</td>
<td>2012</td>
<td>1</td>
<td>Previous stents for stenosis</td>
<td>Removal of stent—rigid bronchoscopy</td>
<td>v/v ECMO</td>
<td>Femoral + IJV</td>
<td></td>
</tr>
<tr>
<td>Thung et al. (14)</td>
<td>Middle East J Anaesthesiol</td>
<td>2012</td>
<td>1</td>
<td>Granulation left main bronch-post LuTx</td>
<td>Rigid bronchoscopy and removal</td>
<td>v/v ECMO</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>George et al. (15)</td>
<td>Ann Thorac Surg</td>
<td>2012</td>
<td>1</td>
<td>Tracheobronchomalacia</td>
<td>Rigid bronchoscopy and stent</td>
<td>v/v ECMO</td>
<td>Femoro-femoral</td>
<td>Awake induction</td>
</tr>
<tr>
<td>Willms et al. (16)</td>
<td>Respir Care</td>
<td>2012</td>
<td>1</td>
<td>Sarcoma tracheal</td>
<td>Rigid bronchoscopy and removal</td>
<td>v/a ECMO</td>
<td>Femoro-femoral</td>
<td></td>
</tr>
<tr>
<td>Keeyapaj et al. (17)</td>
<td>Can J Anaesth</td>
<td>2012</td>
<td>1</td>
<td>SCC tracheal</td>
<td>Carinal resection</td>
<td>v/v ECMO</td>
<td>Femoral + IJV</td>
<td></td>
</tr>
<tr>
<td>Hong et al. (18)</td>
<td>J Crit Care</td>
<td>2013</td>
<td>18</td>
<td>Various tumors</td>
<td>Stent removal, stent insertion, debridement</td>
<td>v/v ECMO</td>
<td>Femoro-femoral</td>
<td></td>
</tr>
<tr>
<td>Metcalf et al. (19)</td>
<td>J Emerg Med</td>
<td>2013</td>
<td>1</td>
<td>Foreign body—sand</td>
<td>Rigid bronchoscopy and removal</td>
<td>v/a ECMO</td>
<td>Femoro-femoral</td>
<td></td>
</tr>
<tr>
<td>Liou et al. (20)</td>
<td>J Chin Med Assoc</td>
<td>2014</td>
<td>1</td>
<td>Thyroid carcinoma</td>
<td>Segmental resection</td>
<td>v/v ECMO</td>
<td>Femoro-femoral</td>
<td></td>
</tr>
<tr>
<td>Chang et al. (21)</td>
<td>Perfusion</td>
<td>2014</td>
<td>7</td>
<td>Different tracheal carcinoma</td>
<td>Resection (5 tracheal segmental, 2 carinal)</td>
<td>v/a ECMO</td>
<td>Femoro-femoral</td>
<td>Awake induction</td>
</tr>
<tr>
<td>Park et al. (22)</td>
<td>J Thorac Dis</td>
<td>2014</td>
<td>1</td>
<td>Trauma</td>
<td>Airway occlusion for tamponade</td>
<td>v/v ECMO</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Wang et al. (23)</td>
<td>Ann Thorac Cardiovasc Surg</td>
<td>2014</td>
<td>1</td>
<td>TEF</td>
<td>Exclusion of esophagus + saliver fistula + gastrostomy</td>
<td>v/a ECMO</td>
<td>Femoro-femoral</td>
<td></td>
</tr>
<tr>
<td>Park et al. (24)</td>
<td>Am J Respir Crit Care Med</td>
<td>2014</td>
<td>1</td>
<td>Foreign body—cement aspiration</td>
<td>Rigid bronchoscopy and removal</td>
<td>v/v ECMO</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Ko et al. (25)</td>
<td>Ann Thorac Surg</td>
<td>2015</td>
<td>1</td>
<td>SCC tracheal</td>
<td>Debridement by rigid bronchoscopy</td>
<td>v/v ECMO</td>
<td>IJV</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 (continued)
<table>
<thead>
<tr>
<th>Author</th>
<th>Journal</th>
<th>Year</th>
<th>Pt #</th>
<th>Indication</th>
<th>Intervention</th>
<th>Support mode</th>
<th>Cannulation site</th>
<th>Induction type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim et al. (26)</td>
<td>Ann Thorac Cardiovasc Surg</td>
<td>2015</td>
<td>15</td>
<td>Lacerations, tumors, stenosis</td>
<td>Resection and repair</td>
<td>v/a and v/v ECMO</td>
<td>Femoro-femoral and femoral + IJV</td>
<td></td>
</tr>
<tr>
<td>Kim et al. (27)</td>
<td>J Thorac Dis</td>
<td>2015</td>
<td>1</td>
<td>Malignant teratoma</td>
<td>Flexible bronchoscopy and debridement</td>
<td>v/v ECMO</td>
<td>Femoro-femoral</td>
<td>Awake induction</td>
</tr>
<tr>
<td>Lang et al. (28)</td>
<td>Eur J Cardiothorac Surg</td>
<td>2015</td>
<td>10</td>
<td>Various tumors</td>
<td>Carinal resections and bronchovascular sleeves</td>
<td>v/a ECMO</td>
<td>7 central, 3 femoro-femoral</td>
<td></td>
</tr>
</tbody>
</table>

Published experience of ECLS support in pediatric airway surgery

Walker et al. (5)	Anesth Analg	1992	1	Tracheal stenosis	Segmental resection	v/a ECMO	Carotid + IJV	
Goldman et al. (29)	J Pediatr	1996	4	Various indications (laceration, failed surgery)	Repair, replacement and conservative	ECMO (mode ND)	ND	
Shiraishi et al. (30)	Thorac Cardiovasc Surg	1997	1	Fibrosarcoma tracheal	Segmental resection	v/a ECMO	Femoro-femoral	Awake induction
Angel et al. (31)	Pediatr Surg Int	2000	2	Congenital stenosis	Rib cartilage interposition; segmental resection	v/a ECMO	Carotid + IJV	
Connolly et al. (6)	Ann Otol Rhinol Laryngol	2001	6	4 long-segment, 1 posttraumatic stenosis, 1 cyst	Segmental resection; slide tracheoplasty	ECMO (mode ND)	ND	
Brown et al. (32)	Pediatr Crit Care Med	2003	1	Foreign body—grape	Rigid bronchoscopy and removal	v/a ECMO	ND	
Hines et al. (33)	Ann Thorac Surg	2003	4	Congenital stenosis	Slide tracheoplasty	v/a ECMO	Aorta and IJV	
Ignacio et al. (34)	J Pediatr Surg	2006	1	Foreign body—bean	Rigid bronchoscopy and removal	v/a ECMO	Carotid + IJV	
Kunisaki et al. (35)	J Pediatr Surg	2008	3	2 complete rings, 1 bronchogenic cyst	Resection, slide tracheoplasty, carinal resection	2 v/v ECMO; v/a ECMO	IJV +/- carotid	
Smith et al. (36)	Anesthesiology	2009	2	Papillomatosis	Debridement	v/v ECMO	Femoral + IJV	
Collar et al. (37)	Otolaryngol Head Neck Surg	2010	1	Papillomatosis	Debridement	v/v ECMO	Femoral + IJV	Awake induction
Fuzaylov et al. (38)	Paediatr Anaesth	2012	1	Long-segment stenosis	Slide tracheoplasty	v/v ECMO	IJV (double-lumen cannula)	
Park et al. (39)	Int J Pediatr Otorhinolaryngol	2014	3	Foreign body (bean, almond, peanut)	Rigid bronchoscopy and removal	2 v/v ECMO; v/a ECMO	v/v ND, v/a carotid + IJV	
Liston et al. (40)	J Cardiothorac Vasc Anesth	2014	1	TEF and congenital bronchomalacia	Pneumonectomy and segmental esophagus resection	v/a ECMO	IJV and carotid	
surgery. Walles et al. used the system during a repair of a TEF with a bioartificial patch (48).

Awake induction

In the 1970s, the risk of fatal airway obstruction and cardiopulmonary arrest during induction of anesthesia was first recognized in patients with large anterior mediastinal masses (49). Initiation of ECLS under local anesthesia prior to induction of general anesthesia can be performed safely and may prevent this grave complication in such patients. Awake induction and initiation of ECLS has been described for different ECLS configurations [v-v ECMO (27), v-a ECMO (50), CPB (51)] predominately in patients with a near occlusion of the cervical trachea from primary tracheal neoplasms or with tumorous infiltrations of the trachea from thyroid carcinomas (25,27,52). Once ECLS is initiated, general anesthesia can be fully administered and airway tumor debridement or resection can be performed under more safe and controlled conditions.

Extracorporeal support in adult airway surgery

ECLS in oncological surgery

The first reported use of ECLS for airway surgery was published in 1961 in a patient with ACC. While CPB was used in these earlier reported cases, ECMO technology has considerably evolved over the past few decades and has become the preferred support option for ECLS in most institutions that perform airway surgery today. Complex tracheobronchial resections require optimal surgical exposure and adequate control of the patient’s ventilation. The traditional approach of cross-table ventilation with intermittent apnea phases or jet ventilation is sufficient for most oncological airway surgery cases, but presents challenges in extended resections and complex reconstructions.

The use of ECMO poses several advantages in these cases. Firstly, it provides a clear, un-obstructed (tubeless) operative field (especially if peripheral cannulation is used), facilitating precise dissection and reconstruction. If veno-arterial support is used, this additionally provides hemodynamic stability during the surgery if required. The risk of bleeding can be minimized by only partial heparinization with activated clotting times (ACTs) targets between 160–180 seconds. The theoretical spread of tumor cells is neglectable, since ECMO is a closed system and suctioned blood can be discarded (53). There are several institutional reports on the use of ECLS for extended, oncological airway procedures including carinal resections/reconstructions (8,17,28) and extended (crico-)tracheal resections (20,26,54,55).

ECLS during airway surgery in non-malignant cases

There are only few case reports on the use of ECLS in patients with benign airway stenosis. V-v ECMO support has been advocated for endoscopic removal of extensive tracheal papillomata (36). ECLS was also successfully used during the repair of a complex TEF (23,48) and catastrophic airway trauma (transsection of the trachea and life-threatening hemoptysis) (22,56).

ECLS as a support for endoscopic interventions

Rigid bronchoscopic interventions (e.g., tumor debridement and stent placement) are well-established therapies for malignant obstructions of the airways (57). At times, such cases can be very challenging. In patients with high-grade stenosis, surgeons are sometimes reluctant to re-canalize a patient, because of the considerable risk of peri-procedural asphyxia. The published experience is extensive for the use of ECLS support during complex endoscopic airway interventions. Although the use of CPB with full heparinization has been anecdotally reported, ECMO should be used as the device of choice (50,58). V-a ECMO is favored in the acute setting of a patient who is hemodynamically unstable (16), but for all other interventions v-v ECMO is preferred (7,25,27). The largest reported series of ECLS during endoscopic airway intervention comes from the Asian Medical Center in Korea reporting 18 patients with different primary and secondary tracheal malignancies (18). Their results were excellent with a successful weaning from ECMO in all but one case. Most of their patients were anticoagulated with a single heparin bolus dose and despite extensive endoscopic tumor debulking, significant bleeding was only observed in two cases.

In children as well as adults, massive foreign body aspiration might also require ECLS. Case reports of sand, cement or massive food aspiration requiring ECMO have been published (12,19,59).

ECLS in emergency settings

An important indication for ECLS in airway surgery...
is acute situations when conventional ventilation strategies fail. In patients with traumatic airway injuries, conventional ventilation is sometimes impossible. In the situation of a ruptured airway, an orotracheal tube must be advanced across the site of injury. Failing to bridge the defect can result in severe pneumomediastinum, tension pneumothorax and death (60). For extensive distal-tracheal injuries, bridging usually leads to a unilateral intubation, often poorly tolerated by the patients. These situations are considered an acute indication for ECLS (61). Once oxygenation has been restored and maintained, the rupture can be safely repaired (56).

Extracorporeal support in pediatric airway surgery

ECLS plays an important role in pediatric airway surgery. There are several features of the pediatric airway, which make children more vulnerable to airway compromise than adults. Firstly, the pediatric airway is smaller, measuring only a few millimeters in diameter. This is especially important with regard to the subglottic airway. In infants, the maximal diameter of the subglottis is 5–6 mm with a cross-sectional area of 28 mm². Following Hagen-Pouiselle’s law, only a millimeter of mucosal edema results in a 50% reduction of the cross-sectional area (62). Furthermore, children have less cartilaginous stability in their airways, increased chest wall compliance and increased metabolic requirements. For example, the typical oxygen consumption at rest is 6–8 mL/kg/min in a child but only 3–4 mL/kg/min in adults (63). All these factors contribute to the fact that children are more prone to airway compromise than adults.

ECLS for foreign body removal

Aspiration of a foreign body can be lethal in children. Although aspiration can be seen at any age, the majority of reported cases occur within the first 3 years of age (64). The reason for this is that young children often explore their environment by mouth. There are several factors making infants prone to aspiration such as their edentulous oral cavities, a potential for aspiration of food during crying or yelling and immaturity of the neuromuscular structures that control swallowing (65). ECMO is the mode of choice when an aspirated foreign body leads to respiratory failure and the child is too unstable to undergo bronchoscopy. Sometimes extraction of the foreign body can be challenging because of tight impaction and an intermittent complete occlusion of the airway by the manipulating instruments within the small airway lumen. Usually a veno-venous mode is sufficient to provide temporary respiratory support and safe bronchoscopic extraction. However, if respiration is severely impaired and the child is persistently acidic, a veno-arterial support mode should be chosen. Published evidence is limited to two case reports and a retrospective multi-institutional review of a case series (32,34,39). Aspirated foreign bodies requiring ECMO support were beans (n=2), an almond, a peanut, and a grape (n=1), respectively.

ECLS for endoluminal masses

As in adults, endotracheal masses and their management can easily result in a critical airway. There are few reports when ECLS was required to stabilize a child and alleviate obstruction from an endoluminal mass. Malignant endotracheal tumors are rare in the pediatric population and only two cases utilizing ECMO for tracheal tumors can be found in the literature. Shiraishi et al. reported a case of a tracheal fibrosarcoma in a child, which was successfully treated by segmental resection and end-to-end anastomosis with femoro-femoral v-a ECMO (30). Another interesting case published by otolaryngologists and thoracic surgeons from the University of Michigan, described the use of v-v ECMO during vaporization of tracheal papillomatosis (37). This approach has advantages since ECLS facilitates a meticulous and thorough surgical procedure and there is a decreased risk of airway fire when using the laser since supplemental oxygen is not flowing through the surgical field.

ECLS for congenital stenosis

Congenital stenosis is the main indication for ECLS utilization in pediatric airway surgery. One of the challenges in treating these often long-segment stenoses is the maintenance of adequate intraoperative and postoperative ventilation. Cross-table ventilation after opening the airway distal to the stenosis can obscure the operative site, especially in children, where the operative field and airway lumen are small. In distal airway stenosis requiring a resection at the level of the carina, cross-table intubation and ventilation of both lungs might be technically impossible. In order to avoid mechanical ventilation, CPB or ECMO can be utilized. Traditionally, surgical corrections of the airways (e.g., slide tracheoplasties) have been performed using a heart-lung machine and full heparinization (66,67). The reason for this might be
explained by the high percentage of concomitant defects of the heart and great vessels, which are often corrected in the same operation as the slide tracheoplasty (68). The drawback to CPB is that it generally requires a median sternotomy in children and therefore limits the surgical approaches to the trachea. Furthermore, the need for full heparinization also increases the risk for hemorrhagic complications. V-a ECMO cannulation can be performed using the internal jugular vein and the carotid artery creating an ideal surgical field free of cannulas. If needed, ECMO support can be continued postoperatively to avoid aggressive mechanical ventilation. This may be beneficial for the healing of a newly reconstructed airway (35). The use of ECMO during repair of congenital airway stenosis has been highlighted by several case series (6,31,33,35).

Practical considerations on ECLS in airway surgery

ECLS should be considered pre-emptively in all patients with critical intrathoracic airway stenosis, in patients requiring a complex lower tracheal/carinal reconstruction and in cases where a temporary complete airway occlusion is anticipated. In patients with a near-occlusion of the intrathoracic airways by a significant mediastinal mass, ECMO should be initiated under local anesthesia and light sedation, since the risk of total airway collapse after paralysis is not insignificant.

We consider v-v ECMO as the configuration of choice since it can fully support the patients’ respiratory function. Traditionally, v-v ECMO is achieved via a two-cannula configuration, however, with the growing experience of single dual-lumen cannulas in other clinical settings (ARDS, lung transplantation), these cannulas present an interesting less-invasive alternative (25) when the accompanying resources are available (TEE or fluoroscopy). For complex carinal reconstructions, a central v-a approach is preferred if extensive manipulation of the heart and great vessels is anticipated (28).

Peripheral v-v ECLS configurations are usually inserted using a percutaneous Seldinger technique. For v-a ECMO, Seldinger or cut-down are acceptable approaches. Heparin coated tubing should be used in order to reduce systemic heparin doses. For adults, v-v ECMO cannula sizes of 21–25 Fr (drainage) and 17–21 Fr (inflow) are sufficient to provide adequate oxygenation and CO2 removal. Single dual-lumen cannulas of 27 or 31 Fr are usually used depending on patient size. For v-a ECMO, a 17-21Fr arterial cannula and a 21–25 Fr venous cannula are recommended. Central v-a cannulations can be performed when the type of airway surgery requires a sternotomy or a right sided thoracotomy. This has the advantage of sparing the peripheral vessels.

Before inserting the cannulas, a single administration of intravenous unfractionated heparin (60 units/kg) is administered. Target ACTs should be between 160 and 180 seconds. ACT is measured every 15 to 30 minutes during the procedure. At the end of the operation, ECMO flow should be gradually reduced while oxygen saturation and hemodynamic parameters are closely monitored. If the patient is stable, cannulas may be clamped and the patient may be disconnected from the ECMO circuit.

Conclusions

In the vast majority of cases, airway surgery can be safely performed by experienced teams without the need for ECLS. However, there are instances where airway control is predictably very difficult or near impossible, or where loss of airway control can suddenly occur. ECLS is an important tool in the armamentarium of the thoracic surgeon to facilitate extended airway surgery or endoscopic airway manipulation in critical obstructions.

Acknowledgements

None.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

