
© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2017;9(10):4098-4107jtd.amegroups.com

An overview of airway sensory processing in the 
brain

The airways and lungs are innervated by heterogeneous 
populations of sensory nerve fibers that respond to 
chemical and mechanical stimulation of the respiratory 
system (1). Many of these sensory nerve fibers are vagal 
in origin, derived from one of two distinct clusters of 
sensory neurons known as the nodose (or inferior) and 
jugular (or superior) vagal ganglia. In healthy airways, the 
activation of vagal sensory neurons evokes a wide range 
of respiratory responses and sensations that are important 
for the ongoing regulation of breathing, airway clearance 
and the maintenance of airway patency. These responses 
depend on well-defined reflex circuits integrated in the 
brainstem and less well-defined networks within the higher 

brain. The latter represents an essential component of 
the more complex behavioral responses that accompany 
airway stimulation in health and disease occurring through 
ascending connections with subcortical and cortical brain 
regions or through the modulation of bulbar reflexes via 
descending control systems (2,3). In this brief review, we 
will focus on the higher brain circuits in receipt of airway 
sensory inputs, with a particular emphasis on a descending 
modulatory system involving the midbrain periaqueductal 
grey. This descending system is of interest because it may 
be capable of potently regulating airway afferent nerve-
mediated responses and recent evidence has demonstrated 
plasticity in descending control in patients with cough 
hypersensitivity (4). In exploring this topic, we will 
highlight possible central therapeutic targets for curtailing 
symptoms of pulmonary disease associated with excessive 
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sensory nerve activity and propose neural mechanisms that 
might contribute to, or be targets for, inappropriate cough 
control.

Airway sensory inputs reach the higher brain via multiple 
ascending circuits. In rodents, at least two ascending 
pathways have been described. The first is specific for 
nodose ganglia-derived afferent fibers that synapse in 
the medullary nucleus of the solitary tract from which 
projections are sent to pontine and midbrain nuclei (e.g., 
lateral parabrachial nucleus and locus coeruleus), the 
hypothalamus (especially the paraventricular nucleus 
and lateral hypothalamic area), zona incerta, thalamus 
(mediodorsal and ventral posteromedial nuclei) and limbic 
brain (amygdala, insula and cingulate cortex) (5). The 
second ascending pathway is specific for jugular ganglia-
derived afferent fibers, which terminate in the medullary 
paratrigeminal and trigeminal nuclei (rather than the 
nucleus of the solitary tract) from which ascending 
projections are sent extensively throughout central 
somatosensory processing networks including to the 
thalamus (ventral posterolateral and submedius nuclei) and 
somatosensory cortices (5). Consistent with this, functional 
brain imaging studies in humans have demonstrated that 
multiple central networks process the sensory (stimulus 
location, intensity and perception) and affective (degree 
of unpleasantness and emotional valencies) dimensions 
resultant from airway irritant stimulation (6,7). Whether 
these circuits in humans originate from distinct afferent 
neuron subsets innervating the airways, as they do in 
rodents, is not known. Regardless, these circuits presumably 
act in concert to promote motor behaviors (like coughing) 
that help to remove the initiating stimulus and relieve the 
sensory drive. Superimposed on these core sensorimotor 
circuits are several brain systems capable of modulating 
airway sensory processing and/or the resultant motor 
responses (6-8). This system includes network components 
that can suppress or facilitate sensorimotor processing 
(Figure 1) involving the prefrontal cortex (involved in 
placebo modulation of sensation), the insula cortex and 
inferior frontal gyrus (part of a fronto paralimbic system 
needed for motor response inhibition) and midbrain nuclei 
such as the periaqueductal grey (part of descending control).

In pulmonary disease, the excessive activation of 
airway sensory neural pathways is thought to contribute 
to the development of cough hypersensitivity syndrome, 
bronchospasm, excessive mucous secretion and the development 
of unpleasant pulmonary sensations, such as dyspnea and the 
persistent urge-to-cough. Accordingly, understanding the 

Figure 1 The core network putatively involved in descending 
regulation of airway sensory processing. The simplified schematic 
diagram shown in (A,B) depicts established (solid arrows) and likely 
(dashed arrows) neuronal connections which have been described 
in the rodent brain and may contribute to descending control. 
The medial prefrontal cortex (mPFC), the ventrolateral orbital 
cortex (VLO) and amygdala (Amyg) send descending (orange) 
projections to the midbrain periaqueductal grey (PAG). Outputs 
from the periaqueductal grey may either directly or indirectly 
(via the nucleus raphe magus (NRM) of the rostral ventromedial 
medulla) terminate in the nucleus of the solitary tract (nTS) and 
paratrigeminal nucleus (Pa5), where they can either inhibit (“OFF”, 
red) or facilitate (“ON”, green) processing between airway primary 
afferent terminals and recipient second order neurons (C). One 
mechanism by which descending control can be engaged is via 
activation of the submedius nucleus of the thalamus (SubM) 
which indirectly receives ascending (blue) inputs from the airways, 
predominately relayed via the medullary paratrigeminal nucleus 
(through pontine nuclei, not shown). The submedius nucleus has 
strong connectivity with the prefrontal cortical nuclei that govern 
descending control. See text for detailed information on circuit 
anatomy and neuropharmacology.
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processes that induce and maintain sensitization should provide 
a sensible therapeutic pathway for symptom resolution. To this 
end, many studies have focused on the peripheral inflammatory 
mediators that are capable of promoting the activation of airway 
sensors (1). Less attention has focused on the central processes 
that might contribute to altered sensory neural responses (9). 
In animal models, pulmonary infections and cigarette smoke 
exposure enhance synaptic activity between primary sensory 
neurons and second order neurons in the nucleus of the 
solitary tract, a phenomenon that has been likened to central 
sensitization in the spinal cord following inflammatory or 
neuropathic pain states (9,10). Alternatively, functional brain 
imaging studies performed in chronic cough patients suggest 
that enhanced cough sensitivity may coincide with altered 
neural processing in the networks purported to be involved in 
modulating sensorimotor processing (4). In particular, activations 
in the midbrain regions containing the periaqueductal grey 
and adjacent nucleus cuneiformis are upregulated in cough 
patients (compared to healthy controls; Figure 2) during the 

inhalation of irritant stimuli (4). Similar activations are also 
revealed in conditions of pain hypersensitivity (11). This raises 
important questions about the role of midbrain processing in the 
modulation of sensory sensitivity in disease conditions associated 
with both up and down-regulation of cough control. .

Descending control of sensory processing: the 
periaqueductal grey and pain

A well described endogenous neural system exists that is 
capable of modulating primary afferent inputs to second 
order neurons at the level of the spinal dorsal horn. Often 
referred to as the ‘analgesia system’ because of its opioid 
dependent capacity to suppress pain processing, this 
complex neural network can in fact both suppress and 
facilitate afferent processing depending on the specific 
neuronal components recruited. Central to this network 
is the midbrain periaqueductal grey, which serves to 
integrate information from multiple (spinal, bulbar and 
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Figure 2 Functional brain imaging of bulbar descending control circuits in humans. (A) Regions showing blood oxygen level-dependent 
signal increases during inhalation of capsaicin in a cohort of healthy people are represented in red-yellow. The segment within the panel is 
a sagittal slice at the midline that includes the caudal to rostral extent of the brainstem. Dotted lines indicate the levels of the two axial slices 
shown in neighbouring panels. The “z” values are distances in mm inferior to the anterior commissure; (B) capsaicin inhalation activation 
occurs in the midbrain. The aqueduct is at the midline and is nearer the dorsal surface of the midbrain. Activation extends into a region 
ventral to the aqueduct; (C) a sketch of midbrain structures indicates in the red the spatial extent of the periaqueductal grey (PAG); (D) a 
slice through the rostral medulla shows capsaicin inhalation activation in this region; (E) activation seen in (D) is likely to encompass the 
nucleus raphe magnus (NRM) shaded in red on this sketch of the rostral medulla. 
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cortical) sources and actuate the modulation of nociceptive 
processing through neural circuits that exert effects at the 
level of the spinal dorsal horn.

Stimulation of the periaqueductal grey with opioids 
or electrical currents evokes profound analgesia in a 
variety of species (12-18), and deep brain stimulation of 
the periaqueductal grey has been used therapeutically in 
patients with intractable pain (19). The periaqueductal 
grey receives nociceptive inputs from the spinal cord, 
likely through the parabrachial nucleus (20), and is also 
subject to descending influences from the cortex and other 
brain regions. Projections from the periaqueductal grey 
are widely distributed throughout the hindbrain, notably 
to pontine and medullary noradrenergic nuclei and the 
rostral ventromedial medulla, which likely represent 
the final neural pathways for dorsal horn modulation of 
nociceptive processing (21). Electrophysiological recordings 
of neurons in both the periaqueductal grey and rostral 
ventromedial medulla demonstrate distinct populations 
of cells defined as either activated or inhibited during the 
application of peripheral noxious stimuli, appropriately 
named “ON” and “OFF” cells, respectively. ON cells are 
presumed to facilitate noxious processing in the spinal 
cord, while the OFF cells are believed crucial components 
of the descending inhibitory system because their activity 
correlates with an inhibition of nociceptive sensory 
transmission (22,23). Facilitation and suppression are 
brought about by serotonergic and noradrenergic inputs 
to primary afferent terminals or dorsal horn interneurons 
in the spinal cord. The activity of ON cells in both the 
periaqueductal grey and rostral ventromedial medulla are 
inhibited by opioidergic inputs whereas OFF cell activity is 
disinhibited by opioid-dependent inhibition of GABAergic 
inhibitory inputs. Thus, opioids promote descending 
inhibition leading to analgesia (24-26). The capacity to 
facilitate or inhibit sensory processing presumably allows 
behavioral responses to noxious stimulation to be matched 
with competing demands (27).

The periaqueductal grey and vagal sensory 
processing

Conditions of hyperalgesia are associated with an imbalance 
of inhibitory and facilitatory descending inputs to the spinal 
cord, effectively reducing the capacity to invoke descending 
inhibition (28-31). In a functional brain imaging study, we 
noted that patients with chronic cough displayed increased 
neural activity in the periaqueductal grey and neighboring 

nucleus cuneiformis, regions that are similarly activated 
during pain hypersensitivity (4) (Figure 2). This raises the 
question of whether vagal afferent processing from the 
airways is similarly subject to descending modulation from 
the midbrain periaqueductal grey and associated regions, 
and whether dysfunction in this system is an important 
component of cough hypersensitivity. However, airway 
vagal afferents of course terminate in both the medullary 
nucleus of the solitary tract and paratrigeminal nucleus 
(and not the spinal dorsal horn) and as such, it is important 
to consider whether the periaqueductal grey and/ or 
rostroventral medial medulla provide functional inputs to 
these medullary sensory processing nuclei.

The periaqueductal grey has been repeatedly shown 
to play a role in both respiratory and cardiovascular 
control, the nature of which depends on the specific 
subregion under study. For example, both electrical 
a n d  c h e m i c a l  s t i m u l a t i o n  i n  t h e  v e n t r o l a t e r a l 
periaqueductal grey elicit hypotension, vagal bradycardia 
and facilitate the baroreflex, whereas stimulation in 
the dorsal region has the opposite effect (32-34).  
Chemical activation of the dorsolateral periaqueductal grey 
in rats increases respiratory rate and overall respiratory 
activity (35,36) and the respiratory effects elicited from 
the dorsal periaqueductal grey are more prominent from 
the caudal end of the nucleus, suggesting a rostrocaudal, as 
well as the dorsoventral, organization (37). However, it is 
unclear if such effects are mediated by the modulation of 
medullary sensory processing or through direct influences 
of premotor neurons in the rostral ventrolateral medullary 
cardio-respiratory groups. Anatomical tracing studies have 
demonstrated direct projections from the ventrolateral 
periaqueductal grey and rostral ventromedial medulla to the 
nucleus of the solitary tract (38-40), providing an anatomical 
framework for modulatory control (Figure 1). Functional 
evidence for descending modulation of vagal afferent 
processing was demonstrated in an elegant study by Sessle 
et al. (41) in which stimulation of the cat periaqueductal 
grey or the nucleus raphe magnus (part of the rostral 
ventromedial medullary group involved in nociceptive 
control) significantly inhibited respiration and suppressed 
vagally-mediated reflex cough and swallow, coinciding with 
a marked suppression of neuronal activity in the nucleus 
of the solitary tract. Furthermore, they demonstrated 
that responses were reversed by the mu-opioid receptor 
antagonist naloxone, consistent with an activation of the 
antinociceptive system. Remarkably, stimulation of the 
periaqueductal grey and raphe magnus in the same animals 
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also inhibited the nociceptive jaw-opening reflex elicited by 
noxious tooth pulp stimulation, suggesting commonalities 
between the inhibitory regulation of pain and upper airway 
sensory evoked responses. Whether descending facilitation 
can be evoked at the level of the nucleus of the solitary tract 
was not assessed.

Only recently was it discovered that a population of airway 
afferents project to the medullary paratrigeminal nucleus 
(5,42-44) and consequently the possibility of descending 
modulation of paratrigeminal vagal afferent processing has 
not been studied. Nevertheless, the periaqueductal grey and 
the nucleus raphe magnus are important for modulation 
of trigeminal afferent processing throughout the spinal 
trigeminal system. For example, electrical stimulation of the 
periaqueductal grey and nucleus raphe magnus (a component 
of the rostral ventromedial medulla) inhibited all types 
of neurons within the trigeminal medullary dorsal horn 
(45,46) as well as tooth pulp afferent processing within the 
spinal trigeminal nucleus (47,48). Neuronal responses in the 
trigeminal oralis region evoked by tooth pulp stimulation 
were suppressed by both periaqueductal grey and nucleus 
raphe magnus conditioning stimuli and given that such 
responses are naloxone-sensitive (49) it is consistent with the 
activation of the descending antinociceptive system.

Thalamic and cortical regulation of descending 
control: ‘top-down’ modulation

Descending modulation of sensory processing is clearly 
well defined, but this raises the question ‘what regulates 
the periaqueductal grey to drive this descending control’? 
Although graded sensory stimuli generally result in graded 
responses (action potentials) in the primary sensory neurons 
detecting that stimulus, the level of sensation experienced 
may not correlate with stimulus intensity. Indeed, sensory 
perception is subject to significant higher brain modulation 
dependent upon past experiences, stress and anxiety, attention 
and other complex cognitive processes, and this likely 
occurs through ‘top-down’ neural pathways arising from the 
prefrontal cortex and capable of modulating neuronal activity 
in the midbrain periaqueductal grey (Figure 1).

Studies in both animals and humans have demonstrated 
the existence of several prefrontal cortical inputs to 
periaqueductal grey neurons, including from neurons 
originating in the rostral agranular insula cortex (a small 
area of cerebral cortex positioned above the rhinal fissure 
in rodents defined by the absence of cortical layer four), the 
neighbouring ventrolateral orbital cortex (again adjacent to 

the rhinal fissure in rodents), as well as from the dorsolateral 
prefrontal cortex in humans (the medial prefrontal cortex is 
the homologue in rodents) (50-53). Antinociception can be 
readily evoked by prefrontal cortex stimulation in rodents, 
and this is prevented by prior inhibition or lesioning of 
the ventrolateral periaqueductal grey (54), suggesting 
that neurons in the periaqueductal grey are central to the 
prefrontal descending modulation of pain. Transcranial 
magnetic stimulation of the dorsolateral prefrontal cortex 
in humans similarly reduces noxious sensations (55) and 
anatomical tracing studies in rodents confirm the output 
connectivity of the prefrontal cortex to the periaqueductal 
grey (56,57).

Prefrontal cortical neurons involved in pain modulation, 
in turn, receive inputs from a wide variety of central sources. 
One mechanism of prefrontal cortical regulation involves 
afferent information being relayed from the spinal dorsal 
horn to the cortex via an obscure collection of sensory 
processing neurons in the thalamus known as the submedius 
nucleus (Figure 1). Best defined in the rats, the submedius 
nucleus is located close the cerebral midline, ventral to 
the central medial thalamic nucleus and dorsal to the 
paraventricular nucleus of the hypothalamus. It is populated 
by output neurons and local interneurons responsive to 
noxious stimuli from the viscera, muscles and skin (58-60)  
and it receives direct nociceptive inputs from neurons in 
laminar one of the trigeminal nucleus and spinal dorsal 
horn (61-63). Output neurons of the submedius nucleus 
project heavily to the prefrontal cortex, including the rostral 
agranular insula and the ventrolateral orbital cortices. As 
submedius output neurons are principally glutamatergic in 
nature, they provide excitatory drive to recipient cortical 
neurons (64).

The neuropharmacology of these thalamocortical loops 
has been studied in some detail. The nociceptive-related 
inputs to the submedius nucleus and prefrontal cortex 
increases the activity of the output neurons, both directly 
via the release of glutamate and indirectly by enkephalins 
that reduce the activity of the local tonically inhibitory 
GABAergic interneurons, resulting in a net increase in the 
activity of both submedius nucleus and the recipient cortical 
neurons (65). This activation pattern can be mimicked by 
electrical stimulation or exogenously administered glutamate 
or opioid agonists into either the submedius nucleus or the 
prefrontal cortex, resulting in a suppression of the behavioral 
responses to nociception (54,64,66,67). Further functional 
assessment of the connections showed that inhibiting the 
prefrontal cortex suppresses the behavioral effects produced 
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by stimulating the submedius nucleus (64), and paradoxically 
enhanced nociceptive responses consistent with the notion 
that there is ongoing tonic activity in the descending control 
network (68). This tonic activity may reflect additional inputs 
to the submedius nucleus from the raphe (serotonergic) and 
the reticular thalamus (GABAergic) which provide alternative 
sources of excitatory and inhibitory (respectively) influence 
over submedius output neurons, while prefrontal cortical 
output neuronal activity is facilitated by inputs from raphe 
(serotonergic) and the ventral tegmental area (dopaminergic) 
(53,69,70).

‘Top down’ control of visceral sensory processing

There is evidence to suggest that both the prefrontal 
cortex and submedius nucleus of the thalamus play a role 
in the regulation of visceral noxious sensory processing. 
In this regard, the evidence is perhaps strongest for spinal 
visceral nociceptive pathways, although some evidence also 
exists for bulbar visceral afferent pathways. In a model of 
acute visceral pain, both colorectal distension and noxious 
somatic stimulation (but not innocuous stimuli) modulated 
the activity of the same neurons in the ventrolateral orbital 
cortex and submedius nucleus (71-75), indicating that 
viscero-somatic sensory convergence was common in the 
nociceptive control system. Furthermore, administration 
of intravenous morphine dose-dependently attenuated 
descending control evoked by noxious visceral stimulation 
similar to the role that opioidergic pathways play in somatic 
nociception. Electrical stimulation of the submedius 
nucleus resulted in intensity dependent attenuation of 
colorectal distension evoked behavioral responses (75,76), 
while electrical or chemical stimulation (glutamate) 
of the periaqueductal grey or the rostral ventromedial 
medulla inhibited the majority of spinal cord neurons 
activated by colorectal distension in the rat (77,78). Taken 
together, these data suggest a role of the thalamo-cortico-
bulbar descending pathway in the regulation of visceral 
nociception.

With respect to vagal afferents, vagus nerve stimulation 
in the cat induced activity in orbital cortex neurons that 
were also responsive to cutaneous stimuli (79). Consistent 
with this, electrical stimulation of the orbital gyrus in 
anesthetized cats acutely suppressed cough evoked by 
activation of the superior laryngeal nerve (80) whereas 
electrolytic lesions of the orbital region enhanced the hypoxic 
ventilator response, albeit not in all animals studied (81). 
In humans, placebo conditioning substantially reduces the 

perception of the urge-to-cough associated with inhaled 
airway irritants, and the magnitude of this inhibition 
correlates with the degree of activation in the dorsolateral 
prefrontal cortex (82), comparable to placebo analgesia. 
Recently, we used transsynaptic anterograde viral tracers 
in rats to provide anatomical evidence for airway-specific 
vagal afferent inputs to the submedius nucleus, ventrolateral 
orbital cortex and medial prefrontal cortex (42-44)  
suggesting that vagal afferents might similarly modulate 
thalamo-cortical inputs to the midbrain (Figure 1). In a 
follow up study, using a genetically modified conditional 
transsynaptic viral tracing system, we reported that only the 
airway vagal afferents passing through the paratrigeminal 
nucleus in the brainstem (i.e., jugular vagal afferents) 
contributed to this thalamo-cortical circuit (5). Both the 
submedius nucleus and the ventrolateral orbital cortex were 
devoid of inputs via the nodose ganglia and the nucleus of the 
solitary tract.

Inputs from the amygdala represent an alternative 
pathway for regulating the activity of periaqueductal grey-
mediated descending control (Figure 1). Thus, electrical 
stimulation of the medial or central amygdala elicits 
antinociception which is inhibited by blockade of the 
periaqueductal grey (83), indicative of amygdala-evoked 
nociceptive control during fear and other aversive states. 
In this regard, it is interesting that ascending vagal sensory 
inputs from the airways are relayed extensively to the central 
nucleus of the amygdala (5,42), perhaps representing an 
alternative control loop for eliciting descending modulation 
of vagal sensory processing.

Clinical significance and concluding remarks

The central integration that culminates in generating a 
respiratory sensation and modulating a respiratory behavior 
is complex in nature. Many respiratory behaviors are not 
simply reflexes, but are subject to significant regulation by 
higher brain processes. Human studies using functional 
brain imaging have identified forebrain and bulbar response 
patterns that are consistent with descending control of 
airway sensory processes (6,84), and animal studies have 
begun to identify their anatomical connectivity with airway 
sensory pathways (5,43). Whether these circuits are altered 
in disease remains largely unstudied and whether they 
are ultimately targetable from a therapeutic standpoint to 
relieve the symptoms of disease remains to be seen. For 
example, cough can be both up-regulated (for example in 
pulmonary disease) and down-regulated (in neurological 
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conditions such as Parkinson’s disease) and it is tempting 
to speculate that modulation of either the inhibitory or 
facilitatory descending control networks might provide 
a therapeutic option for normalising cough in these 
conditions. Indeed, opioid therapy is the current gold-
standard antitussive agent, and likely suppresses cough 
due to an action within the descending inhibitory control 
systems of the brain. Additionally, altered activity within the 
periaqueductal grey and related nuclei accompanies chronic 
cough (4) and this could conceivably either contribute to the 
establishment of up-regulated cough states (i.e., enhanced 
facilitation) or represent the recruitment of descending 
control mechanisms as a compensatory strategy in an 
attempt to dampen disordered coughing (i.e., enhanced 
inhibition). Whether similar plasticity occurs in these 
networks in conditions of down-regulated cough is not 
known. Accordingly, a deeper understanding of the role of 
descending control in disordered cough states is warranted 
as this may afford novel opportunities for regulating 
disordered cough in a myriad of diseases.
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