The impressive guidance of three-dimensional (3D) printed model in surgery for a patient with right-sided aortic arch and Kommerell’s diverticulum, being presented in our former paper (1), leading to a sound outcome, has been highlighted as well as commented in the editorials which means a big honor for us. Kommerell’s diverticulum has been established a rare abnormity in some researches (2,3), even may be seen only once for some surgeons in their career, the medical management varies due to the rarity and complexity of this disease, including surgery, hybrid procedure, and conservative treatment with drugs. The surgical procedure of healing Kommerell’s diverticulum is somehow unfamiliar to surgeons, to some extend may be difficult, especially associated with a right-sided aortic arch. The way we introduced in our paper (1) way be a good experience to go by for cardiac surgeons.

As mentioned by all physicians, the novel 3D reconstruction of cross-sectional imaging has been an advanced and ubiquitous technique in assisting diagnosis as well as planning and execution of medical management in many fields, such as orthopedic surgery (4), accounting for the biggest population, neurological surgery (5), plastic surgery (6), and cardiovascular surgery (7), to some degree making the therapy being of better efficiency, accuracy and precision. Compared with the digital reconstruction, the physical one, pointing to the printed model, carries a preferable vision and more excellent presence of the anatomy which can be graspable as well as obviating the mental manipulation required in analyzing digital objects on a screen after post-processing in various software and printing machines with the computed tomographic angiography (CTA) or magnetic resonance imaging (MRI) data. As described in Treasure’s paper, the word ‘graspable’, meaning an object which surgeons can be grasp and manipulate in hands even simulate surgery on it, makes a dramatic point. The direct touch and advanced vision provided by the model promises a better understanding and more detailed preoperative planning, the same as ‘more information means better outcome’ wrote by Sundararaghavan (8). It is currently in congenital heart disease where the 3D printing has been most employed for cardiac surgeons, as well has been extended to acquired heart disease. The congenital heart disease is often of great complexity and the hemodynamics are mutable. Utilization of 3D models provide an excellent view of the complexity to the surgeons as well as the simulation of operation before procedure.

With all its numerous advantages and uses of the emerging technique being demonstrated and proofed above, being accompanied by some limitations (7), 3D printing is still some years away from being ubiquitous as CTA reconstruction or MRI in cardiovascular medicine so far. What should be noted is that the rapid prototyping (RP) industry came
to public more than 3 decades ago, but it was just the last
decade that RP was used in medical applications and named
as ‘3D printing’. The gap in the initiating moment tells the
lack of communication and teamwork between physicians
and engineers. Tom Treasure and his team, mainly with John
Pepper, have showed us a successful collaboration which can
overcome the ‘gap’ limitation to follow up. Secondly, the
‘expensive’ issue which has been continuously debated ever
since the utilization of 3D printing in medical applications
dose restrict the prevalence of this novel technology.
The generation of a 3D printed model is such a complex
workflow, involving the acquisition of imaging data, the post-
processing, the digital reconstruction, the printing procedure
and some other related to it, not only expensive but also
time-costing, that can’t be afforded by some situations.
Better would it be if the industry program was simplified and
the printing achieved in-hospital. Thirdly, the availability
of materials which can reproduce cardiovascular structure
holding the most of their characteristics is still limited.
Structure delicate as valves and sub-valves, tiny as coronary
artery, complex as myocardium, flexible as great vessels, are
all difficult to be reproduced with all their properties being
remained. Moreover, robust evidence and explicit researches
demonstrating 3D printing can significantly improve
outcome and patient care is still short-lived.

It is obvious that 3D printing will have an integral role in the
multi-disciplinary and collaborative cardiovascular diagnosis
and management strategies. The feasibility of this technique
has been shown for a broad range of cardiovascular diseases.
From perspectives of future progress, some issues should
be highlighted, involving some of above and others. First of
all, a big progress should be made in the model-generation
industry because a simplified and cheaper one will be vital for
the prevalence of the 3D print technique as a mainstream with
an acceptable costs-outcomes ratio in the imaging division.
Furthermore, large patient cohort prospective studies, which
can lead to large-scale, randomized, clinical trials, focusing on
the specific clinical role that 3D printing plays, the powerful
evidence of 3D printing promoting clinical outcomes, and
the firm demonstration of effectiveness are urgently required.
Lastly, researches on bio-printing procedure involving the bio-
ink materials, printing techniques, extracellular matrix (ECM),
as well as scaffolds, need to put forward in cardiovascular
surgery (9).

Acknowledgements

Funding: We thank for the funding sponsored by Shanghai
Pujiang Program (No. 14PJJD008 and 17PJ1401500),
National Natural Science Foundation of China (No.
81771971) “Chen Guang” Project Supported by Shanghai
Municipal Education Commission and Shanghai Education
Development Foundation (Grant No. 14CG06).

Footnote

Conflicts of Interest: The authors have no conflicts of interest
to declare.

References

printing guided precise surgery for right-sided aortic arch
associated with Kommerell’s diverticulum. J Thorac Dis
2017;9:1639-43.

repair of Kommerell diverticulum. J Thorac Cardiovasc

diverticulum and right-sided aortic arch: a cohort study

4. Huang TW, Hsu RW. Computer-assisted orthopedic
surgery. Formosan Journal of Musculoskeletal Disorders

5. Randazzo M, Pisapia JM, Singh N, et al. 3D printing
in neurosurgery: A systematic review. Surg Neurol Int

of Three-Dimensional Printing in Plastic Surgery. Plast

of 3D printing in cardiovascular diseases. Nat Rev Cardiol

8. Sundararaghavan S. Three-dimensional-printed cardiac
prototypes in complex congenital cardiac defects: New
technology with exciting possibilities. Ann Pediatr Cardiol

Cardiovascular Tissue Engineering. Ann Biomed Eng
2017;45:195-209.

Cite this article as: Chen N, Zhu K, Wang C, Sun X. 3D
printing technique for guiding complicated cardiovascular
jtd.2017.08.157