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Introduction

Many targeted therapies that inhibit genetic alterations, 
required to stop tumor growth and metastasis, have 
demonstrated proven activity in patients with lung 
adenocarcinoma (1,2). The use of matched therapy is 
strongly related to the level of evidence that the identified 
mutation can really predict response to the treatment. 
For instance, epidermal growth factor receptor (EGFR) 
mutations, anaplastic lymphoma kinase (ALK), ROS proto-
oncogene 1, receptor tyrosine kinase (ROS1) fusions 
(level 1) and rearranged during transfection (RET) fusion, 
BRAFV600E mutations and hepatocyte growth factor 
receptor (MET) mutations or amplification (level 2) are 
the ones that are almost universally recognized to predict 

response to a specific drug (2). Immune checkpoint blockade 
has now emerged as a promising therapeutic approach for 
cancer patients including those with lung cancer (3). Still, 
durable tumor responses and prolongation of survival with 
immunotherapy occur in a minority of patients and we lack 
efficient tumor biomarker assays predictive of response to 
these novel therapies.

Current clinical oncology practice relies on the removal 
of tumor tissue through biopsies for analysis of tumor-linked 
genetic alterations. Although tumor tissue biopsy is the 
current gold standard for cancer diagnosis, it is an invasive 
approach, which poses a limitation for repeated sampling 
that is commonly needed for monitoring treatment response 
and resistance to targeted therapies. Furthermore, it has 
become clear that the information acquired from a single 
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biopsy provides a spatially and temporarily limited snapshot 
of a tumor and often fails to reflect the heterogeneity 
of the disease (4,5). Liquid biopsies could provide a 
potential revolution in cancer diagnostics as a minimally 
invasive method for detecting and monitoring diseases, 
complementary to current tissue biopsy approaches (6).  
Indeed, there are several blood sources from which tumor 
DNA or RNA can be obtained and used for the detection of 
specific mutations. Current blood-based biopsy assays focus on 
four biosources, which are, cell-free DNA (cfDNA), circulating 
tumor cells (CTCs), extracellular vesicles (EVs, exosomes, 
oncosomes) and tumor-educated platelets (TEPs) (7).

The presence of cfDNA in plasma was for the first time 
reported in 1948 by Mandel and Metais (8). This cfDNA is 
double-stranded and highly fragmented with an approximate 
length of 150 bp. Many years later, it was discovered that 
cancer patients have higher levels of cfDNA in their blood 
compared to healthy individuals (9). In addition, patients 
with metastatic cancer have higher levels of cfDNA in their 
blood compared to non-metastatic cancer patients (9).  
In 1989, it was proven that cfDNA in cancer patients 
contains tumor DNA (10). This circulating tumor DNA 
(ctDNA) is so much more diluted in normal DNA, that only 
mutation specific polymerase-chain-reaction (PCR) assays 
were initially used to noninvasively analyze tumor genomes 
with sufficient sensitivity and specificity. However, the fact 
that most tumors consist of subclonal populations and only 
some of the somatic mutations are carried by all cells, poses 
difficulties about the use of mutation specific PCR assays. 
The recent use of next generation sequencing (NGS) based 
options has partially overcome this problem. The current 
methods for the detection of specific DNA aberrations are 
PCR-based techniques like our protein nucleic acid (PNA) 
clamp-based PCR assay (TaqMan assay) (11-13), digital PCR, 
droplet digital PCR (ddPCR) (14), BEAMing (for Beads, 
Emulsions, Amplification, and Magnetics) technology (15) or 
amplification refractory mutation system (ARMS) PCR (16).  
Multiplex PCR techniques are also lately used, such as 
tagged amplicon sequencing (17), as well as ligation and 
hybridization-capture methods (18), with the best example 
of this strategy being found in the study of Newman and 
colleagues (19). Needless to say, apart from blood, cfDNA 
can also be extracted from other body fluids, like urine. In a 
recent study, KRAS mutations were detected with mutation 
enrichment NGS in urine cfDNA of cancer patients and they 
provided good concordance with archival tumor tissue (20).

In our group we have worked since 1998 with cfDNA 
in non-small cell lung cancer (NSCLC) patients (21-25). 

Herein, we will review the use of cfDNA in lung cancer 
diagnostics and disease monitoring, emphasizing our 
own experience, as well as the current limitations for the 
development and commercialization of a liquid biopsy test.

Detection of somatic mutations in cfDNA–the 
reality until now for lung cancer patients

From 2005 until 2008, the Spanish Lung Cancer Group 
performed a large scale screening study for EGFR mutations 
in patients with metastatic NSCLC (26). EGFR mutations 
were found in 350 out of 2,105 patients (16.6%) (27).  
Baseline blood samples were available from 164 patients, 
and the EGFR mutation could be detected in 97 of 
them (59.1%). Deletions in exon 19 were determined 
by length analysis after PCR amplification and exon 21 
L858R mutations were detected with a 5’nuclease PCR 
assay (TaqMan assay). Both reactions were performed 
in the presence of a PNA clamp, designed to inhibit the 
amplification of the wild-type allele. The adjusted hazard 
ratio for the duration of progression-free survival (PFS) 
was 1.68 for the presence of the L858R mutation in paired 
serum DNA, as compared with the absence of the mutation 
(P=0.02) (Table 1). In a prespecified analysis of a secondary 
objective of the European Tarceva versus Chemotherapy 
(EURTAC) study, the rate of EGFR mutations in cfDNA 
was examined with the same methodology (26) and with a 
53.2% sensitivity (27,39). The presence of EGFR mutations 
in cfDNA was associated with shorter PFS (HR 0.43; 95% 
CI: 0.26–0.73; P=0.002). However, when the blood samples 
were reanalyzed with an optimized rapid and sensitive 
PNA-based PCR assay (TaqMan assay), EGFR mutations 
(both deletions 19 and L858R mutations) could be detected 
in 78% of patients with usable blood samples (11). With the 
same optimized technique, we have been able to detect and 
quantify BRAFV600E in mixed archival serum and plasma 
samples of melanoma, colon and NSCLC patients with a 
specificity of 100% and a sensitivity of 57.7% (12). We have 
also demonstrated the negative prognostic significance of 
the EGFR L858R in cfDNA (10). On average, the median 
overall survival (OS) for erlotinib-treated NSCLC patients 
with the EGFR L858R mutation detected in their tissue was 
17.7 (95% CI: 10.0–23.5) months. Among them, median 
OS was 13.7 (95% CI: 7.1–17.7) months for those with the 
L858R mutation also detected in their blood compared to 
27.7 (95% CI: 16.1–46.2) months for patients without the 
mutation detected in their blood (P=0.02) (11). We have 
now performed a large-scale prospective screening of EGFR 
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mutations in the blood of unselected advanced NSCLC 
patients with our PNA-based PCR assay. Among 1,026 
assessable blood samples of advanced NSCLC patients with no 
biopsy or insufficient tumor tissue, sensitizing EGFR mutations 
were detected in 113 of them. An objective response rate of 
72% was observed among 18 patients, treated with an EGFR 
tyrosine kinase inhibitor (TKI), based exclusively on the results 
of the EGFR testing in the blood (28).

Other investigators have explored the utility of the 
therascreen EGFR rotor-gene Q (RGQ) PCR Kit, the 
cobas EGFR Mutation Test or other methodologies for the 
detection of EGFR mutations in the blood (Table 1). The 
IFUM study was a phase IV single arm study to assess the 
efficacy and safety of gefitinib as first line therapy in EGFR 
mutant Caucasian NSCLC patients (29). In an exploratory 
biomarker analysis, the Therascreen EGFR RGQ PCR kit 
was used for the detection of EGFR mutations in cfDNA, 
with high concordance, specificity and sensitivity (29). 
The same test was used in the phase III LUX-Lung 3 and 
6 trials (30) (Table 1). In the FASTACT-2 study in which 
chemotherapy with sequential erlotinib was compared to 
chemotherapy alone in NSCLC patients, EGFR mutations 
were assessed in the blood with the Cobas test, with a 
sensitivity and specificity of 75% and 95%, respectively, 
and a concordance between tissue and blood tests of 88%. 
Furthermore, the dynamic changes of EGFR mutations in 
cfDNA were able to predict treatment outcome (31). The 
cobas EGFR Mutation Test v2 was used for the detection 
of EGFR mutations in the plasma samples of the patients 
enrolled in the ENSURE trial (32). The test demonstrated 
a sensitivity of 76.7% and a specificity of 98.2% (33). The 
same test was used in the AURA3 study for the detection of 
the EGFR resistant mutation, T790M, with a sensitivity of 
46.57% and a specificity of 71.83% (34,35). In a retrospective 
analysis of the AURA study, the group of Geoffrey Oxnard 
demonstrated that Beads, Emulsion, Amplification and 
Magnetics type digital polymerase chain reaction (BEAMing 
dPCR) could detect the T790M mutation in cfDNA at the 
time of acquired resistance to EGFR TKI with a sensitivity of 
70% (36,40). The results of this study indicated that blood-
based testing can identify patients who have progressed on 
an EGFR TKI and have developed the T790M mutation, 
but for the 30% of patients with false-negative plasma 
genotyping, a tumor biopsy is still required to determine 
the presence, or absence, of the resistant mutation (36,40). 
The same group had previously performed a prospective 
study to evaluate the performance of the ddPCR for the 
detection of EGFR (including T790M) and KRAS mutations 

in the blood of advanced NSCLC patients (37,41). Plasma 
ddPCR could detect with a median turnaround time of  
3 days EGFR exon 19 deletions with a sensitivity of 82% and 
a specificity of 100%, EGFR L858R with a sensitivity of 74% 
and a specificity of 100%, EGFR T790M with a sensitivity 
of 77% and a specificity of 79% and KRAS mutations with 
a sensitivity of 64% and a specificity of 100% (37). Finally, 
the ASSESS study was performed in an effort to evaluate the 
diagnostic performance of various assays for the detection 
of EGFR mutations in cfDNA (38). The study enrolled 
1,311 patients from 56 centers in Europe and Japan and the 
mutation testing methods in the plasma were mainly the 
Therascreen EGFR RGQ PCR kit, the Roche cobas EGFR 
mutation test, peptide nucleic acid-locked nucleic acid (PNA-
LNA) PCR Clamp and Cycleave. Overall, the concordance 
of EGFR mutation status in tissue and plasma samples was 
89%, with 97% specificity and 46% sensitivity. The Qiagen 
therascreen EGFR RGQ PCR kit and the Roche cobas 
EGFR mutation test surfaced as the most sensitive (73% and 
75% respectively) among the plasma assays evaluated (38).

Aside from EGFR mutations, we have less experience 
from clinical trials and liquid biopsy assays for the detection 
of other alterations, like ALK fusions or KRAS mutations, in 
cfDNA. Capture-based NGS has been used for the detection 
of ALK fusions in cfDNA with an overall sensitivity, specificity 
and accuracy of 54%, 100% and 72%, respectively (42). 
Very interestingly Bordi and colleagues have shown that 
KRAS mutations can emerge as a mechanism of resistance 
to crizotinib in ALK positive NSCLC patients (43). They 
analyzed using ddPCR, cfDNA of 20 ALK positive NSCLC 
patients progressing to crizotinib. Three of them patients were 
carriers of both ALK resistant mutations and the KRAS point 
mutation p.G12D, while in seven patients only a KRAS point 
mutation in codon 12 was detected at the time of progression 
to crizotinib (43).

KRAS mutations are the most common oncogenic 
alterations detected in approximately 20–30% of NSCLC 
patients (44). The presence of KRAS mutations is usually 
associated with the use of tobacco (1,45,46). Co-occurring 
genetic alterations in STK11 (LKB1), TP53 and CDKN2A/
B can define three major subgroups of KRAS mutant lung 
adenocarcinoma with distinct response to immunotherapy. 
Specifically tumors that carry both KRAS and TP53 mutations 
have higher levels of somatic mutations and inflammatory 
markers, indicating a higher probability of response to 
immune checkpoint blockade. This is not the case for triple 
mutant tumors (KRAS, TP53 and STK11) that are lacking an 
immune system engagement and the probabilities of response 
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to immune checkpoint blockade are lower in comparison with 
the double mutant tumors (47). KRAS mutations indicate a 
poor outcome of the patients and currently there is not any 
efficient targeted therapy for this disease (48). 

The data until now from several studies as well as a meta-
analysis indicate that KRAS mutations in cfDNA may not 
be useful to predict response to chemotherapy (49-51).  
However, our everyday clinical experience allows us to say 
that in KRAS mutant NSCLC patients, when the mutation 
is also detected in the cfDNA the prognosis of the patients 
is detrimental. We present the example of a 48-year-old  
man who was diagnosed with a KRAS pG12V lung 
adenocarcinoma in April 2017 (Figure 1). The patient had 
brain and bone metastasis at presentation. Before starting first 
line chemotherapy we extracted blood, which revealed the 
KRAS G12V mutation in cfDNA with a 12.1% mutant allele 
fraction, together with a TP53 G245V (6.5% mutant allele 
fraction) and a STK11 G196V (6% mutant allele fraction) 
mutation. After three cycles of chemotherapy with cisplatin, 
pemetrexed and bevacizumab, computed tomography (CT) 
scan imaging demonstrated massive progression in all sites 
of the disease. The Guardant360 assay at the time of disease 
progression revealed a significant increase of the KRAS 
mutant allele fraction (Figure 1). We managed to include the 
patient in a phase 2, open-label, randomized study of the anti-
CD38 monoclonal antibody daratumumab administered in 

combination with atezolizumab compared with atezolizumab 
alone. The patient was randomized to the single arm therapy 
but unfortunately passed away after the first administration of 
atezolizumab.

Finally apart from detecting mutations and resistant 
mutations to targeted therapies in cfDNA, massive parallel 
sequencing has been used to predict response to chemotherapy 
or immunotherapy in NSCLC through the detection of gains 
and losses of chromosomal regions in cfDNA and defining 
genomic copy number instability (CNI) (52,53).

Commercially developed liquid biopsy kits 

In September 2014, the Committee for Medicinal Products 
for Human Use of the European Medicines Agency 
(EMA) adopted an amendment to the license of gefitinib 
stating that cfDNA may be used for the detection of EGFR 
mutations if a tumor sample is not available, based on the 
data for the therascreen EGFR RGQ PCR Kit (29). The 
cobas EGFR Mutation Test v2 was the first liquid biopsy 
test to be approved by the United States Food and Drug 
Administration (US FDA), in June 2016, for the detection 
of exon 19 deletions and exon 21 L858R mutations and the 
use of erlotinib (32,54-56). Three months later (September 
2016), the same test received FDA and EMA approval for 
the detection of the T790M and the use of osimertinib (57).

06/04/2017 28/07/2017

Mutations detected At baseline % cfDNA At progression % cfDNA

KRAS G12V 12.1 42.5

TP53 G245V 6.5 18

STK11 G196V 6 15.9

Figure 1 The clinical case of a 48-year-old man, diagnosed with a stage IV lung adenocarcinoma KRAS mutant. The patient was included 
in the SLIPP study. The  allelic fraction of the KRAS mutant allele was significantly increased at the time of progression to first line 
chemotherapy. cfDNA, cell-free DNA; SLIPP, the Spanish Lung Liquid versus Invasive Biopsy Program.
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There are currently at least seven commercially available 
kits for the detection of genetic alterations in cfDNA of 
cancer, including NSCLC, patients (Table 2). As previously 
commented, the therascreen EGFR RGQ PCR Kit is EMA 
approved, while the cobas EGFR Mutation Test v2 is the first 
and only liquid biopsy test approved by the FDA. Targeted 
NGS is recently used for the non-invasive detection 
of genetic alterations in lung cancer patients (Table 2).  
There are three tests (Guardant360, FoundationACT 
and OncotypeSEQ) that, though not still FDA approved, 
have demonstrated good accuracy when validated with 
clinical samples (59). Among them, Guardant360 is the 
one most commonly used by the oncology community 
since its commercial introduction in 2014. It is a cfDNA 
targeted NGS panel that has been studied in more than 
20,000 clinical specimens with an almost 100% analytic 
sensitivity and a comparable clinical sensitivity with tissue 
derived NGS (60). To prospectively validate Guardant360 
for the rapid detection of genetic alterations in lung 
adenocarcinoma, we have conducted the Spanish Lung 
Liquid versus Invasive Biopsy Program (SLIPP) study. The 
SLIPP is a multicenter non-inferiority observational study, 
in which blood is collected prior to first line chemotherapy 

and upon progression from patients with metastatic non-
squamous NSCLC (the case report mentioned above has 
been included in the SLIPP study). The results of the 
blood assay will be compared with tissue testing performed 
as standard of care in Spain, using a variety of “real life” 
techniques, including, but not limited to, USA FDA-
approved companion diagnostics (EGFR PCR tests and 
ALK FISH testing). The accrual of 182 patients has been 
completed and the results are awaited. 

Conclusions

There is no doubt that blood represents a rich source of 
information through which solid cancers can be detected, 
identified and classified, and matched to a specific therapy. 
Although cfDNA can be an efficient biosource for the 
detection of somatic mutations in lung cancer patients, as 
well as for monitoring treatment, we consider that other 
alterations like ALK rearrangements or MET exon 14 
skipping mutations, that result in defecting messenger 
RNA splicing, can be more accurately detected using RNA 
based assays (61). For instance, platelets can sequester tumor 
RNA through a microvesicle driven mechanism and can be 

Table 2 Commercially developed liquid biopsy kits

Test Company Methodology Mutations detected Status Reference

Cobas EGFR 
Mutation  
test v2

Roche 
Molecular 
diagnostics

Real-time PCR 
amplification test

Exon 18 (G719X) substitutions, exon 
19 deletions, exon 20 insertions and 
substitutions (T790M, S768I), exon 
21 substitutions (L858R, L861Q)

FDA approved [2016] for 
erlotinib and osimertinib

–

TheraScreen 
EGFR RGQ 
PCR Kit

Qiagen PCR amplification 
test using ARMS 
and Scorpions 
Technologies 

Exon 18 (G719X) substitutions, exon 
19 deletions, exon 20 insertions and 
substitutions (T790M, S768I), exon 
21 substitutions (L858R, L861Q)

EMA approved [2014] for 
gefitinib

(38)

Target-Selector Biocept Real-time PCR 
amplification test

EGFR mutations – –

Trovera Trovagene PCR in blood and 
urine cfDNA

EGFR, KRAS and BRAF mutations – –

Guardant 360 Guardant 
Health

Digital 
sequencing

Single base mutations in 73 genes, 
amplifications in 18 genes, fusions 
in 6 genes, indels in 23 genes

CLIA certified laboratory 
developed test since February 
2014

–

FoundationAct Foundation 
Medicine

High depth 
sequencing 
(Illumina HiSeq)

62 genes and 6 gene fusions CLIA certified laboratory 
developed test since May 2016

(58)

OncotypeSEQ Genomic 
Health

NGS 17 genes CLIA certified laboratory 
developed test since June 2016

–

RGQ, rotor-gene Q; EGFR, epidermal growth factor receptor; PCR, polymerase-chain-reaction; FDA, Food and Drug Administration; EMA, 
European Medicines Agency; cfDNA, cell-free DNA; NGS, next generation sequencing.
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transformed to TEPs. We have worked extensively in order to 
demonstrate that genetic alterations such as EML4-ALK fusion 
transcripts can be detected in RNA isolated from platelets 
(62,63). Furthermore, platelet RNA biomarker signatures can 
be altered in the presence of cancer and can be used for cancer 
detection (64,65). Other investigators have also shown that 
detection of cancer at early stages is feasible using cfDNA (66).

Several research and development efforts regarding 
liquid biopsy diagnostics exist throughout Europe and the 
US, but they lack an integration of concepts, including, 
discovery, development, standardization, clinical validation 
and implementation. To this scope, we have developed a 
consortium funded by the European Union (European 
Liquid Biopsy Academy; ELBA), in which we will combine 
the experience of academic partners and small-medium 
enterprises (SMEs) to create a large integrated project 
that will cover the development and implementation of 
innovative diagnostics and comparison of the four blood-
based biosources (cfDNA, CTCs, EVs, and TEPs) and 
technologies aimed at NSCLC. 
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