AB035. A silent remaining TIVAP catheter that migrated to branches of left pulmonary artery: case report and review of literature

Chih Yean Lum1, Yu-Shan Lin2, Po-Lin Chen1,3, Po-Kuei Hsu1,4, Yu-Chung Wu1,4

1Departments of Surgery, 2Departments of Anesthesiology, 3Division of Cardiovascular Surgery, 4Division of Thoracic Surgery, Taipei Veterans General Hospital, Taipei, Taiwan

Abstract: Totally implantable venous access ports (TIVAP) play an important role in the administration of chemotherapy agents. We presented a case who received port removal years ago, presented with a silent remaining catheter that migrated to branches of left pulmonary artery. A 66-year-old male patient with the history of left femur undifferentiated pleomorphic sarcoma received subcutaneous port implantation in. After years of treatment and follow up, no remission was noted. Due to the absence of blood reflux, the port was removed in 2014. In June 2017, he was admitted again for femoral implant failure. Chest X-ray showed a broken catheter in the left pulmonary vasculature, with chest CT confirmation. Considering potential complications, removal of the catheter was suggested. After discussion with the radiologist, surgical intervention was preferred considering its location and possibility of entrapment of catheter within the vessels. Preoperatively, three-dimensional reconstructions CT scan revealed a catheter locating in the anterior segmental and anterior basal artery branches of left pulmonary artery. Supported by three-dimensional imaging, a tiny incision on left pulmonary artery was needed for catheter removal during operation. The procedure was smooth and the whole clinical course was uneventful. Broken catheter and its possible complication have been described frequently in the literature. However, branches of pulmonary artery are rare locations for migration of fractured catheter. The clinician should be scrupulously not only in the implantation but the removal of TIVAP.

Keywords: Broken catheter; left pulmonary artery; chemoport; catheter migration

doi: 10.21037/jtd.2017.s035