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Introduction

Obstructive sleep apnoea (OSA) is a common condition 
(1,2), characterised by episodic upper airway narrowing 
during sleep. The episodic upper airway narrowing during 
sleep leads to intermittent hypoxia (IH) and arousals 
from sleep. There is a clear association between OSA 
and cardiovascular disease (3). OSA is associated with 
hypertension (4,5), increased sympathetic activation (6), 
endothelial dysfunction (7), oxidative stress (8), and possibly 
systemic inflammation (9). IH, recurrent arousals, recurrent 
intrathoracic pressure swings, and sleep fragmentation are 
thought to be key pathological processes in the development 
of cardiovascular disease in OSA (10). This review will focus 
on the role of IH in the development of cardiovascular 
disease.

Hypertension and sympathetic activation

Hypertension is  one of  the main r isk factors  for 
cardiovascular disease and the leading cause of mortality 

from stroke and ischaemic heart disease (11). OSA is 
associated with increased blood pressure (12), and with 
increased diagnoses of hypertension (4,5). Continuous 
positive airway pressure (CPAP) treatment for OSA has 
been shown to reduce both systolic and diastolic blood 
pressure by approximately 2 to 3 mmHg (13,14). The 
additional benefit of CPAP may be more marked in those 
with resistant hypertension on multiple medications (15), 
whilst benefits from the addition of CPAP to hypertension, 
responding to single agent therapies, are less marked (16). 

Animal models of IH have shown its potential importance 
in the development of hypertension in OSA. Fletcher’s group 
elegantly showed in some species of rodents that IH leads to 
a significant increase in blood pressure that are independent 
of hypercapnia (17). This was dependent on carotid 
chemoceptors (18), the sympathetic nervous system (19),  
the renal arteries (20), and the renin-angiotensin-
aldosterone axis (21). Although there were large increases 
in blood pressure due to sympathetic activation, increases 
in heart rate were not seen with experimental IH. Sustained 
rises in blood pressure have been shown to be secondary to 
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upper airway occlusion and its consequences including IH, 
and not recurrent arousals, in a canine model of OSA (22).

Exposure to hypoxia is known to lead to elevations 
in blood pressure in healthy individuals, both in those 
exposed to sustained hypoxia at altitude (23), and those 
exposed to IH (24). Whilst increased sympathetic activity 
and increased blood pressure are seen with both sustained 
and IH, increases in heart rate are only seen with sustained 
hypoxia (24,25). The reasons for IH only leading to 
increased daytime blood pressure and not heart rate are 
unclear. A possible explanation may be sustained alterations 
in the renin-angiotensin-aldosterone axis following acute 
alterations in sympathetic activity with IH (21), with 
changes in sympathetic-vagal balance only leading acute 
elevations in heart rate during exposure to IH (26).

Acute blood pressure rises overnight are likely to be 
related to arousal. Blood pressure rises accompany arousal 
in healthy individuals with simulated apnoeas (27), and 
following spontaneous apnoeas in OSA patients (28). 
Blood pressure rises are similar when arousals are induced 
by apnoeas with or without supplemental oxygen in OSA 
patients (29), with arousals from an auditory stimulus in OSA 
patients (28), or with arousals from a combined auditory 
and vibratory stimulus in healthy volunteers (30). Hypoxia 
without arousal does not lead to acute blood pressure 
rises (28). IH in OSA may have a modulatory effect on 
sympathetic activation (31), and sustained hypoxia increases 
sympathetic activation for days following descent to sea 
level (25). The combination of OSA and hypoxia induced 
by travel to altitude in lowlanders causes elevations in blood 
pressure compared to levels prior to ascent, and this increase 
is somewhat mitigated by acetazolamide (32). Acetazolamide 
improves both mean oxygen saturations as well as the AHI 
at altitude so it is not clear if the effect on blood pressure is 
due to improvements in hypoxia or other mechanisms such 
as reduced arousal mediated sympathetic activity.

All of this evidence supports the importance of IH in 
leading to increased blood pressure in OSA via sustained 
increases in sympathetic activation. Supplemental oxygen 
in OSA, by attenuating IH, may lead to similar reductions 
in blood pressure as CPAP (14). To date there have been 
two randomised controlled trials looking at the longer-
term effect of supplemental oxygen on blood pressure 
in OSA (33,34). Although supplemental oxygen was 
shown to reduce catecholamine, suggesting a reduction 
in sympathetic activation (34), supplemental oxygen had 
no effect on daytime blood pressure (33,34). Both of these 
studies have limitations; low flow rates of oxygen were 

used (2 or 3 L/min), patients with severe OSA or severe 
hypoxaemia were excluded (33), and CPAP had only a small 
treatment effect on blood pressure (1.9 mmHg). Therefore, 
these have not definitively established the role of overnight 
IH in the observed elevated diurnal blood pressures seen in 
patients with OSA. 

Oxidative stress

Oxidative stress results from an imbalance between 
the production of reactive oxygen species (ROS) and 
antioxidant mechanisms. IH is thought to lead to oxidative 
stress by decreasing antioxidant mechanisms in periods of 
hypoxia and increasing ROS production during periods of 
reoxygenation; termed an ischaemia-reperfusion injury (35). 
Oxidative stress is thought to be a central mechanism in 
the development of cardiovascular disease (36). Oxidative 
stress may lead to hypertension via increased brain nuclei 
sympathetic activation and increased angiotensin II (37), 
and endothelial dysfunction which is thought to be a 
precursor of atheroma formation (38), and will be discussed 
later in this review. Whilst obesity and diabetes are more 
established risk factors for oxidative stress (39), the role of 
IH in OSA is less certain. 

Animal experiments have shown tissue specific increases in 
oxidative stress following IH, for example; in the heart (40),  
in the brain (41), and in the mesenteric arteries (42). In 
human experiments, where healthy individuals were 
exposed to IH during the daytime, some blood biomarkers 
of oxidative stress have been found to increase (43).

OSA patients exhibit increased levels of ROS production 
from monocytes and granulocytes when compared to 
control subjects (44). In addition endothelial cells harvested 
from forearm veins of OSA patients show signs of increased 
inflammation and oxidative stress which is correlated to 
impaired endothelial function (38). A novel breath analysis 
technique has highlighted a family of compounds associated 
with OSA, which are linked to oxidative stress (45). 
However, elevated oxidative stress is not a universal finding 
in OSA, with others reporting no increases in systemic 
markers of oxidative stress in OSA (46-48).

Oxidative stress and its relationship to cardiovascular 
disease is tissue specific (49). Whilst blood is readily 
accessible, changes in traditional blood biomarkers 
of oxidative stress may not accurately reflect levels of 
oxidative stress in the coronary arteries or elsewhere in the 
cardiovascular system. Novel approaches are required to 
establish the role that tissue specific oxidative stress plays in 
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the development of cardiovascular disease in OSA.

Endothelial dysfunction

An important role of the endothelium is in sensing 
changes in blood flow and releasing substances that 
regulate arterial calibre in response to these flow changes, 
described as endothelial function. It has been recognized 
that impairment of endothelial function occurs in both 
hypertension (50), and in patients with coronary artery 
atherosclerosis (51), therefore it is commonly thought to be 
an early stage in the development of cardiovascular disease. 
Endothelial function is commonly assessed by measuring 
flow mediated dilatation at the brachial artery (52), and this 
non-invasive measurement is used as a surrogate marker 
of endothelial function elsewhere, such is in the coronary 
arteries.

Animal models suggest that IH only leads to endothelial 
dysfunction in the early stages of atherosclerosis. Only 
early preatherosclerotic mice, and not mice fed a high fat 
diet leading to advanced preatherosclerotic, had impaired 
endothelial function following IH compared to control (53).  
Endothelial dysfunction under conditions of IH may be 
dependent on inflammation and oxidative stress as the anti-
inflammatory drug infliximab, and the antioxidant drug 
L-glutathione, both blocked this impairment (54). Others 
have found that whilst markers of oxidative stress were 
increased by IH, IH only leads to endothelial dysfunction in 
mice when combined with a high fat diet (55).

In vitro studies using endothelial cells exposed to 
donated microvesicles from the blood of individuals 
exposed to IH showed adverse effects on these endothelial 
cells’ function (56). Experimental exposure to IH in healthy 
human volunteers, whilst leading to rises in blood pressure, 
may not cause the same effect on endothelial function as 
observed in animal and in vitro studies (57).

There is clear evidence of endothelial dysfunction in 
patients with OSA (58), and this is improved by treatment 
with CPAP (59,60). There is contrasting evidence from 
animal experiments, in vitro studies, and experimentally 
induced IH in healthy individuals as to the role of IH in 
OSA in causing endothelial dysfunction. 

What determines cardiovascular risk in OSA?

There is an association between OSA and cardiovascular 
disease. In uncontrolled longitudinal observational studies, 
severe untreated OSA has been shown to be a risk factor 

for cardiovascular disease (3,61). Whilst adjustments are 
made for known confounders such as obesity in these 
longitudinal studies, they cannot account for unknown 
confounders such as compliance with anti-hypertensives 
and statins. Randomised control trials are needed to provide 
further insight into whether OSA has a causal role in the 
development of cardiovascular disease.

The SAVE trial is the first large RCT to look at the 
long-term effect of CPAP cardiovascular events (62). This 
did not show a reduction in cardiovascular events with 
CPAP compared to standard care. This study was powered 
to detect a difference in cardiovascular events despite 
only a moderate compliance with CPAP of, on average,  
3.3 hours/night. The conclusions that can be drawn 
from this study are limited to secondary prevention of 
cardiovascular disease, and it may be that younger patients 
without prior cardiovascular disease would derive a 
benefit from CPAP, unlike the studied population (63). In 
addition the SAVE study did not include those most sleepy 
(patients with an Epworth sleepiness score or ESS >15 were 
excluded), nor those with severe hypoxaemia (patients with 
>10% of their sleep study time with oxygen saturations 
<80% were also excluded).

The severity of hypoxaemia may be of relevance 
in determining risk cardiovascular r isk.  The risk 
of cardiovascular disease with OSA in middle-aged 
community-based adults as part of the Sleep Heart 
Health Study was found to be related to the severity of 
oxygen desaturations (64). The relationship between OSA 
and cardiovascular disease was lost when considering 
hypopnoeas or oxygen desaturations <4%. This suggests 
that only more significant desaturations greater than this 
4% threshold are those of relevance to the development of 
cardiovascular disease.

The results of the SAVE study suggest there is no 
additional benefit in reduction of cardiovascular risk in 
secondary prevention for OSA in patients without severe 
sleepiness or hypoxia (62). CPAP may reduce cardiovascular 
risk for those more sleepy or more severe OSA patients who 
will currently be treated for symptoms anyway (65). Future 
work is required to explore whether other therapies may be 
beneficial in reducing cardiovascular risk in OSA. 

CPAP withdrawal

CPAP withdrawal is an experimental way of modelling the 
short-term consequences of OSA. CPAP withdrawal can 
be used to assess the physiological effects of OSA without 
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the confounding effects seen in cohort studies or the 
issues of low CPAP usage in conventional RCTs. Patients 
with known OSA who have been established on CPAP 
with good average usage, typically for over one year, are 
randomised to two weeks of sham CPAP (with return of 
significant OSA) or continued therapeutic CPAP (control 
group). The return of OSA during CPAP withdrawal is 
associated with a 9 mmHg rise in systolic, and 7.8 mmHg 
rise in diastolic, home early morning blood pressure (66), 
increased sympathetic activity with increased urinary 
normetanephrine and impaired endothelial function (58). 
Whilst blood and urine biomarkers of oxidative stress are 
not increased by CPAP withdrawal (47,48), sophisticated 
analysis of exhaled breath shows an increase in compounds 
associated with oxidative stress with CPAP withdrawal (45).

CPAP withdrawal is therefore a powerful experimental 
design to further explore the physiological changes in OSA. 
Currently we are running a trial assessing the effect of 
overnight supplemental oxygen during CPAP withdrawal on 
its ability to attenuate, or not, the expected blood pressure 
rise (ISRCTN: 17987510). This trial is using supplemental 
oxygen at a flow rate of 5 L/min, which is higher than 
previous trials (33,34), on morning blood pressure during 
CPAP withdrawal. Preliminary results are encouraging in 
showing a marked attenuation of IH with minimal effect on 
AHI and autonomic arousals (67). 

Conclusions

IH is a key feature of OSA. There is clear evidence from 
animal models, in vitro studies and human experimental 
models of IH of its potential deleterious effects. There is 
evidence that IH leads to hypertension and sympathetic 
activation in humans, oxidative stress, and endothelial 
dysfunction. However, in OSA in addition to IH, there are 
other potential mechanisms that may lead to cardiovascular 
disease including arousal induced sympathetic activation, 
sleep fragmentation, and intra-thoracic pressure swings. A 
greater understanding of the relevant contributions of each 
of these mechanisms to the development of cardiovascular 
disease in OSA is of great importance. The SAVE trial 
showed no additional benefit of CPAP above standard care 
in preventing further cardiovascular events in patients with 
prior cardiovascular disease, with the notable exception 
that it did not include the most sleepy or hypoxemic 
patients. Supplemental oxygen therapy has the potential 
to both attenuate the IH and the increased morning 
blood pressure seen in OSA, but current randomised trials 

assessing this have had methodological limitations. A 
greater understanding of the role of IH in the development 
of cardiovascular in OSA is needed to determine if 
supplemental oxygen could be a therapy when CPAP is not 
tolerated, for example in non-sleepy individuals with OSA 
and resistant hypertension. 
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