Coronary artery disease (CAD) is common among patients undergoing transcatheter aortic valve implantation (TAVI) with a prevalence of up to 75%, and no clear recommendations around its treatment (1) and conflicting evidence around whether to perform coronary revascularization or not. Moreover, the role of revascularization on long-term morbidity and mortality is still not clear in octogenarians (2). Piccolo and colleagues (3) have provided an interesting editorial comment on our work (1), and further pointed out controversies with regards to revascularization of patients with CAD and undergoing TAVI.

The authors also commented on their own results (4), based on an elegant age- and gender-matched analysis where they found a significant increase in the composite of cardiovascular death, myocardial infarction, or stroke at 1-year among TAVI patients with CAD. However, it should be highlighted that the authors found a similar risk of ischemic events during TAVI procedures among patients without CAD as compared to the matched population with CAD. Even when the complexity and severity of CAD is considered and the SYNTAX score is used to stratify CAD severity, the evidence is mixed with regards to mortality outcomes (5,6). Moreover, emerging data on completeness of revascularization is also conflicting. Indeed, while Van Mieghem and colleagues (7) suggested no influence of completeness of revascularization on mortality, a recent large analysis showed that incompleteness of revascularization and more severe CAD were independent predictors of mortality (6).

Our findings indicate no benefit in 30-day and 1-year outcomes with a revascularization strategy. Notably, revascularized patients were at higher-risk of major vascular complications, although data were derived from percutaneous coronary intervention (PCI) undertaken through the transfemoral approach and much of the data analysed was subject to the inherent limitations of observational registries such as selection biases and unmeasured confounding.

Revascularization strategies

In terms of symptoms assessment, it is often difficult to rely upon them in this population and tools conventionally used in patients with stable angina to guide revascularization (i.e., fractional flow reserve) are still not well validated and widely used in the setting of severe aortic stenosis. Hence, it is reasonable to percutaneously revascularize ostial or
proximal lesions located in major epicardial vessels that supply significant areas of myocardium, particularly given that this may be technically more challenging post TAVI. Importantly, should the decision for revascularization be taken, we strongly recommend the use of radial artery approach for PCI as the default access in patients undergoing TAVI, whether \textit{a priori} or concomitant. Indeed, the use of the radial access site (compared to femoral) in PCI is associated with a significant reduction in major vascular and bleeding complications (8-10) particularly when the transfemoral approach is the preferred access site for TAVI (11).

\textbf{Timing of revascularization}

The temporal relation of revascularizing coronary lesions to TAVI has not been extensively studied, though a concomitant approach might be seen more attractive when considering the more “controlled” environment during TAVI. The same-setting or concomitant approach is also favoured for ostial lesions with high-risk features for coronary obstruction, as coronary protection strategies with a guidewire can be adopted (12). This strategy might also be beneficial as it minimizes pre-procedural dual-antiplatelet therapy exposure and thus bleeding risks. In terms of patients with chronic kidney disease, until more data is available, an \textit{a priori} approach would be advocated to minimize contrast dye and reduce the risk of acute kidney injury, a known independent predictor of mortality in TAVI patients (13,14).

Importantly, if revascularization is not \textit{a priori} or concomitantly performed and thus, a deferral strategy is chosen, even though post-TAVI PCI is rarely needed and data suggest is feasible in this setting, it can sometimes be challenging (15-19). Hence, performing TAVI with a device that does not jail the coronary ostia would, perhaps, be advisable (15-17,19). In addition, while TAVI is nowadays extended to lower-risk, younger, and less morbid patients, also exhibiting a longer life-expectancy (20), it may be reasonable to proceed with coronary revascularization to prevent the aforementioned potential issue of coronary arteries accessibility should CAD progresses in the future.

Even though physicians are eagerly awaiting the results of the ACTIVATION study (21), one should bear in mind that this is a non-inferiority design trial. Hence, in the absence of solid randomized data showing superiority results that can further guide clinical decision making, individualized risk-benefit assessments should be undertaken based on patient-risk profile, symptoms and life-expectancy. This pragmatic patient-centered approach has been proposed to guide eligibility of choosing TAVI versus surgical aortic valve replacement in the form of the valve durability to life expectancy ratio (20). Certainly, this concept could also assist decision making in the setting of revascularizing CAD in TAVI candidates by incorporating the benefit and harm of PCI, also bearing in mind the predicted life-expectancy in this subset of patients. With the rapid expansion of the field to include younger patients, a concerted back to basics approach to study the significance of CAD in patients with severe aortic stenosis is warranted. Whilst elective revascularization of CAD in patients with stable angina has not been shown to improve hard clinical outcomes in trials such as the COURAGE (22), there is no high-quality data in patients with severe aortic stenosis. Given the conflicting nature of data available outlined above, we propose a framework that aims to ensure safety in real world clinical practice (Figure 1).

\textbf{Conclusions}

The decision of revascularizing CAD in the context of TAVI still relies heavily upon the TAVI heart team’s clinical judgment along with patient’s preferences and values.

\textbf{Acknowledgements}

None.

\textbf{Footnote}

Conflicts of Interest: The authors have no conflicts of interest to declare.
References

