Introduction

Uniportal video-assisted thoracic surgery (VATS) surgery was widely practiced since its first practice by Rocco. The single incision applied for thoracic surgery was made for less pain and cosmetic consideration. Meanwhile, continuous attempts were made to further modify this procedure and introduce our technique for uniportal VATS lobectomy through transaxillary incision.

Case presentation

Surgical technique of transaxillary uniportal VATS lobectomy

Anesthesia and analgesia

The patient received a combination of epidural and general anesthesia. After intravenous induction, he was intubated with a double-lumen endotracheal tube to accomplish single lung ventilation during the operation. Patient’s vital signs were followed and recorded every five minutes throughout
the operation. After the surgery, the patient was extubated at the end of surgery and transferred to the ward with patient-controlled analgesia (PCA) equipped.

Position and incision

The patient was kept in a folding knife gesture (with the cranial side slightly raised up and caudal side pushed down) in lateral decubitus position (*Figure 1*). The right arm was sanitized and draped to be mobilizable, facilitating the exposure of the incision during the surgery. Intraoperatively, the surgeons stood on the abdominal side of the patient. The entire procedure was performed under the screen observation and the surgical video was recorded (Karl Storz, GmbH & Co. Tuttlingen, Germany).

A 4-cm incision was made at the fossa axillaris area parallel to the skin folds (*Figure 2*). The incision tunnels to the 3rd intercostal space at the anterior axillary line. A soft plastic wound protector was then applied to the incision without rib-spreading procedure. A 10-mm 30° thoracoscope (Karl Storz, GmbH & Co. Tuttlingen, Germany) was positioned in the superior side of the incision during the lobectomy. The curved surgical instruments, in together with the harmonic shear (Ethicon Endo-Surgery Inc., Cincinnati, OH, USA) or hook electrocautery were applied during the procedure.

After the introduction of thoracoscope, the exposure of the hilum was shown, which was similar to conventional uniportal VATS. The surgery started from the mobilization of truncus anterior branch along the right pulmonary artery. The Marshall space between the right pulmonary vein (V1a+b) and apical branch of the right pulmonary artery (A1) was exposed. The first branch (V1a) was ligated and dissected to facilitate the exposure of the apical branch (A1), which was cut by using endoscopic stapler. The mobilization and dissection of A3 and then A2 was accomplished after the apical branch. After the dissection of all branches of pulmonary arteries to the upper lobe, the mobilization of right upper bronchus was easy through the transaxillary incision. The horizontal fissure was cut open by using endoscopic staplers, which facilitated the mobilization of right upper pulmonary vein (central vein included). After the dissection of the vein, the right upper lung specimen was taken out by using the endoscopic specimen bag (Ethicon Endo-Surgery Inc., Cincinnati, OH, USA).

The specimen was then sent to the pathology for frozen section, and centralized 3.5 cm inflammatory pseudotumor was verified. The procedure was disclosed after lung re-expansion and careful check for the potential bleeding sites. A 20-Fr chest tube, in together with a negative-pressure bulb were inserted at the end of the operation (*Figure 3*).
The drainage tube was removed 2 days post-operatively. The estimated volume of blood loss was 120 mL without blood transfusion. The surgical video of the procedure was recorded (Figure 4).

Discussion

In this case report, transaxillary uniportal VATS was pioneered on surgical candidates for lobectomy. The right upper lobe lobectomy was achieved through a single 2.5 cm incision that was located at fossa axillaris. Post-operative recovery was uneventful and the patient was discharged 3 days after the surgery. The results suggested that transaxillary uniportal VATS is safe and feasible with potential cosmetic advantages.

Since 2011, growing number of uniportal lobectomies were performed throughout the world (2,3). Meanwhile, continuous modifications to the single-port procedure were made for the sake of improved clinical outcomes (4,5). Among the many efforts, different incision locations of uniportal VATS were most practiced: Liu and associates introduced subxiphoid uniportal VATS, to which the incision was switched from intercostal space to subxiphoid area (6). The procedure facilitated bilateral manipulation with fewer disturbances to the intercostal nerves, and resulted in less pain post-operatively (7). On the other side, Dr. Marcin Zielinski from Poland practiced transcervical uniportal VATS lobectomy (8). The procedure was performed through a cervical incision, sacrificing internal mammary artery for the exposure of the surgical field. As different attempts bear different advantage or disadvantages, none has practiced uniportal VATS through fossa axillaris.

Transaxillary incision was most practiced by thoracic surgeons for first rib resection due to the thoracic outlet syndrome (TOS) (9). For uniportal VATS, the fourth or fifth intercostal space would be optimal for lobectomy. Technically, the subcutaneous tissue under the incision could be well mobilized to create a tunnel between the incision and the third intercostal space along the anterior axillary line. When the port was introduced to the incision, the surgical field was nearly identical to the one created to conventional uniportal lobectomy (10). The procedure went uneventfully according the order of pulmonary artery, right upper bronchus and superior pulmonary vein.

Recently, growing evidence showed that ground glass opacity (GGO) was increasing and female patients were more likely to suffer from GGOs than male patients (11). Another tendency for GGO lesion was that their age was relatively younger at the time GGO was found (12). The combination of the two factors encouraged the introduction of transaxillary uniportal VATS, as the incision was hidden in the axillary area, and the scar made was close both in shape and color in compared to the skin folding in the fossa axillaris. This procedure promises in the cosmetic issue without compromising in surgical or oncological effects.

The case report limited only in the upper lobectomy. In lower lobe resection, the procedure would be relatively difficult since the incision was through the fourth intercostal
space and the exposure of the target vessels was not as easy as the upper lobe. Further studies based on larger case volume would be required to validate its further application.

Acknowledgements

Funding: This work was supported by the American Association for Thoracic Surgery’s Evarts A. Graham Memorial Traveling Fellowship and the National Natural Science Foundation of China (Grant No. 81400681).

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

Informed Consent: All participants sent their informed consents.

References
