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Introduction

Chronic obstructive pulmonary disease (COPD) is the 
fourth leading cause of death worldwide and is projected 
to be the third most common cause of death by 2020 (1). 

Cigarette smoke constitutes the major preventable risk 

factor, resulting in a progressive proteolytic, inflammatory 

and vasoactive response that leads to emphysema, small 

airway obstruction and pulmonary hypertension. The 
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oxidative stress imposed by cigarette smoking together 
with systemic inflammation and hypoxia are important 
contributors to pathogenesis of skeletal muscle wasting 
and dysfunction and have been previously extensively 
reviewed (2-4). Skeletal muscle wasting is an important 
systemic effect of the disease and a strong independent 
predictor of mortality (5-7). This unintentional accentuated 
skeletal muscle wasting is frequently associated with 
altered muscle structure (fiber size, fiber type distribution, 
capillary density and metabolic capacity) and dysfunction 
(decreased strength and endurance). While the magnitude 
of the alterations varies substantially across individuals, 
some degree of muscle wasting affects all individuals during 
ageing. Age-related defects in protein metabolism have 
been proposed to be causally involved in this muscle loss (8).  
These changes are attributed to both inactivity- and age-
related alterations in protein synthesis and degradation, 
indicating complex pathophysiological phenomena 
involving both structural changes to the muscle fibres, as 
well as the enzymatic machinery that controls metabolism. 
Independently of the factors promoting muscle wasting in 
COPD, regular physical exercise remains the most potent 
available treatment option for reversing, in part, locomotor 
muscle wasting and dysfunction in COPD (9). Indisputably, 
exercise training promotes a range of beneficial adaptations 
in the skeletal muscle including increased capillarization, 
fibre type plasticity, hypertrophy and function (9). However, 
exercise training induced muscle benefits are certainly 
much smaller in COPD patients compared to age matched 
controls. In addition, not all COPD patients respond 
adequately to exercise stimulus, even when exercise training 
is properly performed (10,11). An improved understanding 
of molecular mechanisms of exercise induced adaptations in 
COPD and healthy individuals will be valuable to inform 
future directions to address the issues on limitation to 
exercise-induced adaptations in COPD. 

Effect of prescribed exercise training to skeletal 
muscle adaptation in COPD 

Exercise training is a mechanical stimulus that consists of 
repeated, episodic bouts of muscle contraction promoting 
functional adaptation and remodelling not only to the 
skeletal muscle, but also to various systems in our body 
(12,13). Exercise promotes a range of adaptations that is 
beyond the musculoskeletal system promoting general 
health (14). Briefly, in parallel with neural signals to the 
skeletal muscle contraction, powerful neural feed-forward 

signals to the respiratory, cardiovascular, metabolic and 
hormonal systems are produced. In response to exercise 
training, COPD patients demonstrate reduction in dyspnea 
sensations, improvements in exercise capacity and quality of 
life (9). 

Skeleta l  muscle  adaptat ions  are  dependent  on 
the intensity and duration of the exercise training  
performed (15). High intensity exercise training (Wpeak 
≥80%) is generally described to promote improvement 
in exercise capacity. However, COPD patients with 
limited ventilatory capacity are usually unable to sustain 
high intensities for sufficiently long periods. Taking into 
consideration COPD patients exercise capacity, a number 
of studies have been performed employing a varied 
combination of exercise modalities/training, program 
duration and intensity. Usually, the duration of an exercise 
training programme is set from 8 to 12 weeks and as 
frequent as 3 times per week. Combination of high intensity 
aerobic and resistance exercise is described to promote 
quantifiable muscle hypertrophy in COPD (10,11,16,17). 
Conversely, exercise training of lower intensity (Wpeak 
≤60%) was found unable to promote quantifiable changes 
in muscle hypertrophy and fibre type distribution (18,19). 
Therefore, programmes incorporating high intensity 
exercise training are more likely to induce quantifiable 
skeletal muscle adaptations. 

Different modes of exercise such as endurance- and 
resistance–based are known to stimulate variable but specific 
skeletal muscle adaptations, leading to muscle endurance 
and strength respectively (15). Aerobic/endurance exercise 
training enhances mitochondrial protein content and 
oxidative capacity of trained myofibers, improving insulin 
sensitivity and skeletal muscle metabolic function (20). 
Whereas, resistance training increases myosin-heavy-
chain gene transcripts and synthesis rate of muscle proteins 
promoting strength (15). When comparing different 
modalities of exercise prescribed to healthy sedentary 
people, Robinson et al. (21) observed that high intensity 
interval training (HIIT) enhanced more comprehensively 
changes such as aerobic capacity, mitochondria respiration 
and lean body mass (21). HIIT training simultaneously 
promoted endurance- and resistance-based training skeletal 
muscle adaptations, that promoted changes in transcription 
and translat ion regulat ion of  muscle growth and 
mitochondrial pathways (21). HIIT reversed age-related 
proteome, particularly of mitochondrial proteins. But both 
resistance training and HIIT increase proteins involved in 
translational machinery. HIIT exercise involves 30–120 s 
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repeated short bouts of activity at near maximal intensity 
(Wpeak ≥80%) interspersed with 30–120 s rest periods, 
which despite its high intensity, has been successfully 
applied to COPD patients (10,11,17,22). A representation 
of basic skeletal muscle adaptation promoted by aerobic/
endurance, resistance and HIIT is depicted in Figure 1.

Therefore, adaptations seen in COPD skeletal muscle 
take place in accordance with specific exercise training 
stimuli, thereby partially explaining the large variability 
in muscle adaptations seen among studies. The effect of 
exercise modalities in promoting COPD skeletal muscle 
adaptations at structural and protein metabolism levels have 
been recently presented in a systemic review (19).

Histologically, the skeletal muscle appears uniform, but is 
composed by a range of heterogeneous myofibers regarding 
size, metabolism and contractile function. When comparing 
myosin-heavy-chain isoform expression, myofibers are 
classified into types I, IIa, IId/x, and IIb fibres (23). Types I 

and IIa fibers exhibit high oxidative potential and IIx and IIb 
are primarily glycolytic. The degree to which endurance- 
or resistance-based exercise training can induce myofiber 
plasticity is still debatable. Certainly, COPD patients 
present a shift in fibre type displaying fewer type I (oxidative) 
fibres and greater proportion of type II (glycolytic) fibres 
in quadriceps muscles (24). This shifting towards glycolytic 
fibres is associated with increased mortality (7). Exercise 
training prescribed to COPD patient can only partially 
reverse this fiber type shifting. Proportion of fiber types I 
and IIa were increased mainly after HIIT and high intensive 
aerobic exercise (19,25) as endurance training confers an 
increased oxidative profile to trained myofibers (9,11,22,23). 
Hypertrophy of fibre types I and IIA was more widespread 
among different modalities of exercise training (9,19), 
whereas, capillary to fiber ratio adaptations were though 
observed across various intensities and modalities of exercise 
training (9,19). 

Figure 1 COPD skeletal muscle adaptations to various modalities of exercise training. Exercise training is a powerful stimulus producing 
hypertrophy and regeneration of muscle by increased protein metabolism and fusion of satellite cells to existent myofiber. Endurance- 
and resistance-based exercise training programmes are characterised as stimuli capable for increasing oxidative capacity and hypertrophy, 
respectively, whereas high intensity interval training is capable of increasing both oxidative capacity and hypertrophy. Skeletal muscle 
adaptations observed from combined endurance/resistance as well as high intensity interval training reflect a wider range of stimuli. [The 
Figure has been inspired by Robinson et al. (21) and modified based on presented theory]. COPD, chronic obstructive pulmonary disease.
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Contribution of inactivity to COPD muscle 
wasting

Inactivity appears to be an important mechanism in the 
process of muscle wasting in COPD, given that muscles that 
are active, such as the diaphragm and the adductor pollicis, 
do not exhibit atrophy in contrast to inactive muscles, such 
as the quadriceps (26). In experiments comparing different 
muscle groups in COPD patients, the characteristics 
exhibited by the deltoid and the diaphragm were different 
compared to the quadriceps (27). Importantly, the muscles 
of respiration in COPD exhibit a contrary shift in fiber 
typing compared to the locomotor muscles, manifested 
by increased type I fiber distribution (28,29). Various 
conditions of reduction in neuromuscular activity promoted 
by inactivity are known to decrease myonuclear number 
in atrophying muscle and impact on fibre typing. As 
reviewed elsewhere (30), detraining experiments in healthy 
individuals have shown to induce locomotor muscle 
adaptations that lead to increased number of muscle fibre 
type IIx phenotype, and attenuation of mitochondrial 
biogenesis [peroxisome proliferator-activated receptors 
(PPARs) and PGC-1α] as observed in COPD patients. As 
described above, resuming activity by exercise training can 
partially promote changes in fibre type distribution (19). 
However, inactivity alone does not seem to fully explain the 
phenomenon of muscle fibre type shifting in COPD. 

Mechanical stress and mitogen-activated protein 
kinase (MAPK) signalling

The ability of skeletal muscles to respond to physical 
exercise by executing the appropriate metabolic and 
transcriptional response is dependent upon the cellular 
signal transduction through phosphorylation cascades. 
Multiple kinases, including AMPK, Akt and the MAPKs are 
involved in the regulation of DNA transcription through 
the phosphorylation of nuclear transcription factors. This 
either enhances or inhibits the ability of transcription 
factors to bind DNA, affecting target gene transcription 
(31,32). Three main MAPK subfamilies are activated by 
acute exercise in human skeletal muscle: (I) the extracellular-
regulated kinase (ERK1/2), (II) the c-jun N-terminal kinase 
(JNK), and (III) the p38 MAPK. Activation of MAPKs 
regulates the transcriptional events by phosphorylation of 
diverse substrates localised in the cytoplasm or nucleus, 
including transcription factors, inducing differentiation, 
hypertrophy, inflammation, and gene expression (33).

The MAPK p38 is a stress-activated kinase that is 
transiently activated in response to a strenuous range of 
stimuli such as physical inactivity and increased intensity of 
exercise training (34,35). Activation of p38 in skeletal muscle 
myoblasts is related to loss in satellite cell autonomous self-
renewal capacity (36). MAPK p38 activation is also observed 
during skeletal muscle immobilisation in a rat hind limb 
model of acute muscle wasting (34,37). COPD are generally 
more inactive compared to their age-matched healthy 
counterparts (38). Accordingly, ratios of phosphorylated to 
total level of p38 MAPK and ERK 1/2 were significantly 
elevated in patients with COPD compared to controls (39). 
Whereas, another study has shown no differences in the 
ratio of phospho-p38 MAPK to total level of p38 MAPK 
protein between COPD patients and healthy age-matched 
donors. Although patients with COPD present muscle 
wasting, discrepancies among studies would be expected as 
it is uncertain whether patients are actively losing muscle 
mass at the time of experimentation. 

Major signaling pathways involved in the control 
of exercise training induced skeletal muscle 
adaptations

Endurance- and resistance-based modalities of exercise 
are controlled by two major signaling pathways regulating 
mitochondria biogenesis and hypertrophy, respectively as 
depicted in Figure 2. 

The regulation of mitochondrial  biogenesis by 
endurance-based exercise converge from activation of the 
cascades AMPK and p38 upregulating PGC-1α. When 
compared to healthy controls, mitochondria density is lower 
in quadriceps muscle of COPD patients, presenting lower 
expression of PPARs, PPAR-γ co-activator 1α (PGC-1α) 
and mitochondrial transcription factor (TFAM) in cachectic 
COPD (40). In patients with COPD, exercise enhances the 
decrease in mitochondria DNA content of skeletal muscle 
and the expression of PGC-1α mRNA seen in healthy 
subjects, probably due to oxidative stress (41).

In contrast, resistance training is described to stimulate 
the signaling pathways responsible for muscle hypertrophy 
(12,13). The activation of mTOR and IGF-I appears to 
be important in this process. To restore muscle mass via 
regular exercise training, protein synthesis should exceed 
protein breakdown over an extended period. Hypertrophy 
of skeletal muscle as result of resistance exercise training is 
strongly associated with the degree of mTOR activation, 
ribosomal protein S6K (p70S6K) phosphorylation and 
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downstream targets (42). Contraction-induced p70S6K 
activation is dependent on mTOR activation, which 
increases protein translation and inhibits protein 
degradation via inhibition of both ubiquitin-proteasome 

(UP) (32,43,44) and autophagy-lysosome (AL) pathways 
(45,46). mTOR activation is critical to load-induced muscle 
growth, as demonstrated by the attenuation of hypertrophy 
responses and protein synthesis by the mTOR inhibitor, 

Figure 2 Diagram of the major signalling pathways involved in the control of skeletal muscle hypertrophy and mitochondrial biogenesis. 
Voluntary exercise training activates kinases/phosphatases to mediate a specific exercise-induced signal. The cross talk among the numerous 
signalling pathways activated and the multiple site regulation produces a high sensitive and complex transduction network. Activation of 
AMPK by aerobic/endurance exercise training enhances mitochondrial biogenesis partly by directly phosphorylating and activating PGC-
1α. Resistance training is a potent stimulus for the increase in skeletal muscle mass. Activation of FAK through integrins leads to the 
inhibition of TSC, thereby permitting activation of mTOR. In addition, hypertrophy is promoted by activation of IGF-1 activating PI3K/
Akt/mTOR signaling pathway that leads to hypertrophy. AMPK, AMP-activated protein kinase; PGC-1α, PPAR-γ coactivator 1α; FAK, 
focal adhesion kinase; TSC, tuberous sclerosis complex; mTOR, mammalian target of rapamycin; IGF-1, insulin-like growth factor 1; PI3K, 
phosphatidylinositide 3-kinases.
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rapamycin (43). 
We have described that Akt/mTOR pathway is 

downregulated in skeletal muscle of non-cachectic COPD 
patients compared to cachectic (10). HIIT promotes the 
activation of the Akt/mTOR pathway in skeletal muscle 
only in COPD patients with preserved muscle mass 
compared to cachectic (10). Some studies suggest that 
hypoxemia characteristically observed in more severe 
cachectic COPD patients, is associated with resistance of 
skeletal muscle activation of the Akt/mTOR pathway (16).  
Exercise training in hypoxemic patients with COPD was 
not capable to promote muscle fibre hypertrophy and 
activation of the Akt/mTOR pathway as compared to 
normoxemic COPD patients (16). Both in vitro C2C12 
myotubes cultured in normoxic and hypoxic conditions 
and mice models of hypoxia suggest that the response of 
the Akt/mTOR pathway to exercise could be compromised 
in hypoxemic patients (16,47). Therefore, impairment 
of skeletal muscle hypertrophy commonly linked to the 
severity of the disease is associated with the magnitude 
of muscle wasting, the degree of hypoxia, or both. 
Interestingly, induced expression of the adaptive response 
of hypoxia HIF-1 responsive RTP801 (DDIT4) is observed 
only in trained COPD and not in healthy subjects (48). 

mTOR regulates the mechanisms of protein synthesis 
at several levels (e.g., translation capacity, translation 
efficiency) through increases of translation of specific 
mRNAs, which culminates in skeletal muscle fibre 
enlargement. mTOR exists as part of two multi-protein 
complexes: (I) mTORC1, which contains raptor and confers 
rapamycin sensitivity, is required for signalling to p70S6K and 
4E-BP1; whereas (II) mTORC2, which contains Rictor and 
is rapamycin insensitive, is required for signalling to Akt-
FOXO (49). The effect of mTOR activity on downstream 
regulators of protein synthesis is principally achieved 
through a contraction-induced regulation of mTORC1 (50). 

Early work on adaptive hypertrophy has focused on 
the (transient) post exercise rise in blood-borne anabolic 
hormones, such as growth hormone and insulin-like 
growth factor-I (IGF-I), and the consequent activation 
of the muscle protein synthesis of a signalling cascade 
[phosphatidylinositol 3-kinase (PI3K)-Akt-mTOR] by 
IGF-I interaction with insulin and IGF receptors (51). 
Recently, the muscle growth paradigm has shifted focus 
to IGF-I-independent mechanisms of mTOR activation 
and adaptive hypertrophy through mechano-sensory 
regulation (50). Nutrient-dependent regulation of muscle 
growth is achieved through insulin- and Akt-dependent 

activation of the mTOR pathways. These pathways 
operate synergistically causing muscle growth and can be 
augmented by appropriate nutritional intake such as post 
exercise carbohydrate and amino acid ingestion or increased 
dietary protein (52). Therefore, IGF-I is involved not only 
in hypertrophy but also in promoting myogenesis and 
muscle regeneration. 

Regulation of skeletal muscle protein synthesis 
promoting myogenesis and muscle regeneration

Skeletal  muscle hypertrophy is  achieved by both 
positive protein balance and fusion of satellite cells to 
myofibers (Figure 1). It is a process that involves (I) 
accretion of protein in various cellular compartments via 
mechanosensitive signalling pathways that drive translation; 
and (II) the activation and recruitment of resident muscle 
stem cell (satellite cells) that differentiate to fusion-
competent myoblasts (53,54). Regulation of protein 
translation and synthesis promotes accretion, whereas 
activation and incorporation of satellite cells facilitates the 
addition of myofibrils to the muscle.

Myogenesis and muscle regeneration depend on critical 
steps for activation of quiescent satellite cell, proliferation, 
migration, differentiation, fusion and maturation. Fusion of 
a satellite cell to an existent myofiber results in an increase 
in the number of myonuclei, and thus the available total 
amount of genetic machinery for protein production (54). 
The average number of myonuclei per muscle fibre of non-
cachectic COPD is twice as high compared to controls, 
indicating higher capacity of protein metabolism necessary 
for maintenance of muscle mass (55). Quiescent satellite 
cells are essential to replenishment of myonuclei pool. As 
satellite cells replicate throughout lifespan, telomeres are 
shortened. Telomere shortening is a marker of senescence. 
COPD patients, despite the observation that satellite 
cells numbers are unaltered in the limb muscle compared 
to controls, satellite cells present shorter telomeres. A 
fact suggesting exhausted muscle regenerative capacity, 
compromising the maintenance of muscle mass (55). 

Satellite cells myogenic regulatory factors (MRF) 
and myostatin play important roles in myogenesis and 
muscle regeneration. mRNA and protein expression of 
the myogenic differentiation factor D (MyoD), involved 
in the proliferation process, has been shown to increase in 
the skeletal muscle of non-cachectic COPD patients after 
HIIT, but no changes were observed in cachectic COPD 
patients after HIIT (10). MyoD protein expression was also 
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increased after resistance training with or without nutritional 
supplementation in patients and healthy controls (56).  
mRNA expression of MRF myogenin, involved in the 
differentiation process, was not different between a 
resistance training group and a control group, while 
addition of testosterone supplementation to resistance 
training increased myogenin mRNA expression compared 
to the control group (57). mRNA and protein expression 
of the myogenic inhibiting factor myostatin, showed no 
significant change after resistance exercise training neither 
in patients nor in healthy controls, or after combined 
aerobic and resistance training (16,56). After HIIT however, 
non-cachectic COPD patients showed a significant decrease 
in mRNA and protein expression of myostatin, while 
in cachectic COPD patients HIIT did not significantly 
alter mRNA or protein myostatin expression (10). In 
addition, mRNA expression of a negative regulator of cell 
proliferation Kruppel-like factor 10 (KLF10) was increased 
after aerobic training in patients, but not in healthy  
controls (48). 

The IGF-I system plays an important role in the 
regulation of muscle cell growth, muscle cell proliferation 
and muscle cell survival (58,59). After HIIT, mRNA 
expression of both IGF-I and the mechano-growth factor 
(MGF), an isoform of IGF-I, significantly increases. Both 
cachectic and non-cachectic COPD patients have shown 
enhanced MGF mRNA expression post-training (10). 
However, no significant increase in protein expression 
of IGF-I and MGF expression was observed in cachectic 
COPD patients in comparison to non-cachectic (10). Other 
exercise protocols such as combined aerobic and resistance 
training were not capable to increase the expression of the 
IGF-I variants (16). However, testosterone supplementation 
was found to increase the levels of IGF-I and MGF protein 
expression in COPD patients after resistance training (57). 

Exercise induced changes in gene expression

Comparing gene transcription among different modalities 
of exercise in healthy individuals, Robinson et al. (21) found 
that HIIT promotes a stronger increase in gene transcripts 
than other modalities of exercise tested, particularly in older 
adults. 

Skeletal muscle gene expression from COPD after 
high intensity aerobic exercise training compared to age-
matched controls were analysed using GeneChip Array (48).  
High aerobic exercise training induced up-regulation of 
quantitatively significantly fewer genes in the skeletal 

muscle of COPD (107 were upregulated and 124 were 
downregulated) compared with healthy controls (258 were 
upregulated and 315 were downregulated). Qualitatively, 
genes associated with protein degradation, such as oxidative 
stress, ubiquitin proteasome, and COX pathways were 
distinctly induced only in patients with COPD, potentially 
reflecting the specific molecular response of the muscle to 
exercise in COPD, thereby suggesting additional operating 
mechanisms for exercise limitation in these patients (48). 
Whether exercise training can sufficiently enhance muscle 
hypertrophy to outstrip muscle wasting in COPD patients 
with substantial muscle loss, remains an unresolved issue.

Regulation of skeletal muscle protein breakdown

Muscle tissue homeostasis is maintained by a tight and 
complex balance between protein synthesis and degradation. 
Protein metabolism turnover is a dynamic process balancing 
protein synthesis and breakdown. Muscle wasting due to 
an increase in protein breakdown is a feature shared among 
many acute and chronic disease entities as well as healthy 
ageing. 

Muscle wasting has primarily been attributed to increased 
protein degradation. Protein degradation in COPD patients 
peripheral muscles takes place through four proteolytic 
systems, including the UP pathway, the calpain pathway, 
the caspase pathway, and the AL pathway as reviewed  
elsewhere (60). 

Exercise has been found to stimulate MAPK-9 and 
MAPK activated protein kinase 3 (MAPKAPK-3) in COPD 
compared to healthy controls (48). The MAPK pathway, 
in turn activates forkhead transcription factors, involved 
in muscle protein degradation. When inflammatory 
response to exercise is limited, the muscle recovers in a 
timely manner; however, persistent systemic inflammation 
described in COPD, may be associated with muscle wasting 
and adversely impact on muscle protein metabolism (61). 
Numerous pathological indicators in COPD, namely 
systemic inflammation, hypoxia and oxidative stress most 
likely trigger catabolic processes in skeletal muscle, that are 
mediated by transcriptional regulators including nuclear 
factor kappa-light-chain-enhancer of activated B cells  
(NF-κB) and forkhead box O transcription factors (FOXOs). 
The activity of NF-κB is increased in COPD compared 
with healthy age-matched individuals (9,10,19,22,62) and 
in particular in patients with muscle wasting compared to 
those without muscle wasting (10,63). FOXO mRNA and 
protein expression is increased in patients with COPD 
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(62,64-67). The expression of FOXO-1 may be associated 
with physical inactivity as protein expression is increased 
in lower limbs compared to respiratory muscles in COPD 
patients, but not in healthy controls (68). Increased 
catabolic signaling through FOXO and NF-kB activation 
may induce gene expression of key factors in both ubiquitin  
proteasome system (UPS) (32,69) and the autophagy 
lysosome pathways (45).

Concluding remarks

Exercise training promotes a range of beneficial adaptations 
in the skeletal muscle including increased capillarization, 
fibre type plasticity, hypertrophy and function. All these 
adaptations are a result of exercise stimuli that challenges 
muscle homeostasis by activating networks of signalling 
molecules. Activation of kinases and pre-transcriptional 
regulation occurs rapidly during exercise and recovery, 
whereas protein transcription is subsequently regulated. 
Intensity, duration, and mode of the exercise stimuli 
collectively contribute to the relative activation and the 
magnitude of activated pathways and downstream targets 
(9,12,13). All these parameters have to be considered when 
designing exercise studies, so results are comparable and 
can advance knowledge in the area. Future studies on the 
molecular mechanisms of exercise induced satellite cell 
myogenic capacity in COPD patients are fundamental 
for designing pharmacological and exercise training 
interventions aiming to address limitations to exercise-
induced muscle adaptations.
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