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Therapeutics targeting epigenetic regulators (1-3), immune 
modulators (4-6) and receptor tyrosine kinases (7-9) have 
emerged as promising drugs for cancer patients who are 
refractory to conventional chemotherapy, radiotherapy 
or surgery (Figure 1). These cutting-edge therapeutics, 
together with next-generation sequencing (NGS) 
technologies that produce bulk genomics-related data as 
commodities of clinical medicine, have led to a gradual 
shift toward personalized or precision medicine. Whole 
genome sequencing comprehensively detecting alterations 
in common and rare cancer-related genes and cancer gene 
panels detecting alterations in approximately 300 common  
cancer-related genes are representative NGS-based 
sequencing (10-12). In current practice, personalized 
medicine involves using NGS-based diagnostic tests to 
select patients and time points for targeted therapy; in the 
future, precision medicine will involve utilizing multiple 
layers of omics data to optimize benefit-risk balance for 
targeted therapy (10). Lung cancer is one of the most 
common malignancies in the world (13). Non-small cell 
lung cancer (NSCLC) accounts for the majority of lung 
cancer cases, and NSCLCs can be sub-classified into lung 
adenocarcinoma, lung squamous cell carcinoma and other 
types of cancer. Epidermal growth factor receptor (EGFR) 
inhibitors (afatinib, erlotinib, gefitinib and osimertinib) and 
immuno-oncology drugs (atezolizumab, nivolumab and 
pembrolizumab) are representative targeted therapeutics 

approved for the treatment of NSCLC patients (14-16). 
Because recurrence and adverse effects are unavoidable even 
when cutting-edge targeted therapies are administered, 
the use of a combination of different categories of drugs is 
a rational strategy to enhance the benefits and reduce the 
drawbacks of targeted therapy. 

Epigenetic regulation of transcription and phenotypes 
involves chromatin-dependent mechanisms, such as 
methylation of genomic DNA and post-translational 
modification of histones (1-3). Because chromatin consists 
of genomic DNA wrapped around histone octamers, 
closed and open chromatin states are fine-tuned via DNA 
methylation and histone modification. In closed chromatin 
or heterochromatin, transcription factors cannot access 
genomic DNA; such chromatin is found in transcriptionally 
repressed regions, which are characterized by methylation 
of histone H3 lysine 9 (H3K9) and hypermethylation 
of genomic DNA. In contrast, in open chromatin or 
euchromatin, transcription factors can access genomic 
DNA; such chromatin is found in transcriptionally active 
regions, which are characterized by tri-methylation of 
H3K4 and H3K36 and hypomethylation of genomic DNA. 
CpG hypermethylation in the promoter regions of tumor 
suppressor genes induces the silencing of these genes, 
whereas genetic alterations in various epigenetic regulators, 
such as ASXL1, ASXL2, BAP1, DNMT3A, EZH2, IDH1, 
IDH2, MLL1, MLL3, NSD1, NSD2, NSD3, SMARCA4 and 
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TET2, are involved in human carcinogenesis (1,2,17-23).  
Epigenetic dysregulation plays a pivotal role in human 
carcinogenesis. Bromodomain and extra-terminal (BET) 
inhibitors, DNA methyltransferase (DNMT) inhibitors, 
histone deacetylase (HDAC) inhibitors, histone lysine 
demethylase (KDM) inhibitors and histone lysine 
methyltransferase (KMT) inhibitors have been developed as 
drugs that target epigenetic regulators (1-3).

Immuno-oncology therapeutics are generally classified 

into inhibitors  of  immunosuppress ive l igands or 
receptors (immune checkpoint blockers) and activators 
of immunostimulatory receptors (immunostimulatory 
agents) (4-6). CTLA4 (CD152), LAG3 (CD223), PD-1 
(CD279/PDCD1), TIGIT and TIM3 (CD366/HAVCR2) 
are representat ive immunosuppressive receptors , 
whereas ICOS, TNFRSF4 (CD134/OX40), TNFRSF9  
(CD137/4-1BB) and TNFRSF18 (CD357/GITR) 
are representative immunostimulatory receptors. 
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Figure 1 Multi-stage carcinogenesis, genomics testing and targeted cancer therapy. Genetic predisposition (germline alterations), chronic 
infection and life style, such as alcohol drinking and tobacco smoking, are involved in progression to pre-malignant stages of carcinogenesis, 
whereas epigenetic dysregulation, genetic alterations (germline and somatic) and immune evasion are involved in progression to more 
advanced stages of carcinogenesis. Chemotherapy, radiotherapy and surgical operation are conventional cancer therapies. By contrast, 
epigenetic drugs, immuno-oncology drugs and receptor tyrosine kinase (RTK) inhibitors or anti-RTK monoclonal antibodies (mAbs) have 
emerged as promising targeted cancer therapies. Cancer gene panels detecting alterations in approximately 300 common cancer-related 
genes and whole genome sequencing comprehensively detecting alterations in common and rare cancer-related genes are next-generation 
sequencing (NGS)-based genomics testing. Genomics testing is necessary to select patients and time points for targeted therapy.
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Immunogenomic analyses have revealed that CTLA4, 
LAG3 and PD-1 are major immunosuppressive receptors 
in various types of human cancers and that TIGIT and 
TIM3 are additional immunosuppressive receptors that 
function in a tumor type-dependent manner (24). PD-1 
ligand 1 (PD-L1/CD274) on cancer cells, macrophages, 
myeloid-derived suppressor cells and stromal cells in the 
tumor microenvironment interacts with PD-1 receptor 
on T cells to induce immune evasion via the inhibition of 
PI3K-AKT, RAS-MAPK and calcineurin-NFAT signaling. 
Blockade of this immunosuppressive signaling using 
monoclonal antibodies (mAbs) against PD-L1 or PD-1 
induces the activation, differentiation and/or proliferation 
of tumor-infiltrating T cells via de-repression of the 
PI3K-AKT, RAS-MAPK and calcineurin-NFAT signaling 
cascades. Anti-PD-L1 mAbs (atezolizumab, avelumab 
and durvalumab), anti-PD-1 mAbs (nivolumab and 
pembrolizumab) and an anti-CTLA4 mAb (ipilimumab) 
are immune checkpoint blockers that have been approved 
for the treatment of cancer patients, whereas other 
immunomodulatory therapeutics that target 4-1BB, GITR, 
ICOS, LAG3, OX40, TIGIT and/or TIM3 are being 
accessed in clinical trials or preclinical research (4-6).

Durable partial or complete responses to immune 
checkpoint blockers, including pembrolizumab and 
nivolumab, have been observed in approximately 20% of 
NSCLC patients and 31-44% of melanoma patients (25); 
however, immune checkpoint blockade therapies have been 
associated with adverse events, including pneumonitis in 
4.7% (43/915) of cancer patients (26) and anecdotal rapid 
progression of cancer or hyperprogressive disease in 9.2% 
(12/131) of cancer patients (27). Expression of PD-L1 
ligand (28) and/or clonal neoantigen on tumor cells (29)  
and mismatch repair (MMR) deficiency (30) have been 
reported as biomarkers associated with preferable response 
to immune checkpoint blockers, whereas higher tumor 
burden (31), loss of neoantigen expression on tumor 
cells (32), escape mutations in the interferon signaling 
cascade in tumor cells (33) and upregulation of alternative 
immunosuppressive receptors on T cells (34) are biomarkers 
associated with poor response to immune checkpoint 
blockers. Comprehensive genotype-immunophenotype 
analyses should be performed in companion studies of 
clinical trials to generalize the mechanisms of durable 
response to, resistance against or severe adverse effects 
of immuno-oncology therapy in various types of human 
cancers. Further fine-tuning of the benefit-risk balances of 
immuno-oncology drugs is necessary for the application of 

these drugs as part of a precision oncology platform.
Recently, Topper et al. reported preclinical research on 

combination epigenetic therapy for NSCLC that evaluated 
(I) synergistic effects of a DNMT inhibitor (azacitidine) and 
an HDAC inhibitor (ITF-2357, MGCD-0103 or MS-275), 
especially the combination of azacitidine and ITF-2357, on 
cells from a panel of NSCLC cell lines and (II) epigenetic 
therapy-induced MYC downregulation, interferon signaling 
activation and CCL5, HLA-A and HLA-B upregulation in 
tumor cells, as well as downregulation of PD-1 and CTLA4 
and upregulation of CCR7 in CD8+ tumor-infiltrating 
lymphocytes, in mouse models of lung cancer (35). Topper 
et al. postulated that depletion of the oncoprotein MYC and 
removal of immune evasion might explain the mechanisms 
by which epigenetic therapy involving DNMT and HDAC 
inhibitors produces anti-tumor effects. In contrast, Zheng 
et al. screened 97 approved oncology drugs and found that 
only the HDAC inhibitor romidepsin induces upregulation 
of the chemokines CCL5, CXCL9 and CXCL10 with T 
cell-attracting potential in mouse and human lung cancer 
cell lines (36). Zheng et al. demonstrated synergistic anti-
tumor effects of romidepsin and anti-PD-1 mAb in mouse 
lung cancer models, and proposed upregulation of T cell-
attracting chemokines and interferon-γ as mechanisms 
underlying the synergistic effects of the HDAC inhibitor 
and immune checkpoint blocker. These two reports clarified 
cross-talk between epigenetic dysregulation and immune 
evasion during lung cancer progression and emphasized 
a rational strategy involving the use of a combination of 
epigenetic drugs and immuno-oncology drugs for cancer 
therapy.

Immune checkpoint blockers can be combined with 
epigenetic therapeutics and other therapeutics (Figure 2), 
including alternative immune checkpoint blockers, cancer 
vaccines, conventional chemotherapy, immunostimulatory 
agents, macrophage inhibitors, metabolic modulators, 
natural killer cell inhibitors, radiotherapy, receptor tyrosine 
kinase inhibitors and regulatory T (Treg) cell inhibitors (6).  
For example, the following combination epigenetic 
immuno-oncology therapies are in clinical trials for 
cancer patients: an anti-PD-L1 mAb (atezolizumab) and a 
DNMT inhibitor (azacitidine) [ClinicalTrials.gov identifier: 
NCT02508870]; an anti-PD-L1 mAb (atezolizumab) 
and a DNMT inhibitor (guadecitabine) [ClinicalTrials.
gov identifier: NCT03179943]; an anti-PD-1 mAb 
(pembrolizumab) and a DNMT inhibitor (CC-486) 
[ClinicalTrials.gov identifier: NCT02546986]; an anti-PD-1 
mAb (pembrolizumab) and an HDAC inhibitor (entinostat) 
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[ClinicalTrials.gov identifier: NCT02437136]; an anti-PD-1 
mAb (pembrolizumab) and an HDAC inhibitor (romidepsin) 
[ClinicalTrials.gov identifier: NCT03278782]; and an anti-
PD-1 mAb (pembrolizumab) and an HDAC inhibitor 
(vorinostat) [ClinicalTrials.gov identifier: NCT02638090].

Upregulation of MYC and downregulation of CCL5, 

CXCL9, CXCL10, HLA-A and/or HLA-B in pretreatment 
tumor samples might be predictive biomarkers of response 
to combination epigenetic immuno-oncology therapies, 
because DNMT and HDAC inhibitors synergistically 
revert immune evasion via MYC repression and reciprocal 
de-repression of CCL5, HLA-A and HLA-B (35) and 
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Figure 2 Strategies targeting immune evasion for cancer therapy. Immune evasion is defined as a defect in anti-tumor immunity in the 
tumor microenvironment. PD-1, CTLA4, LAG3 and TIM3 are immunosuppressive receptors that repress anti-tumor immunity, whereas 
4-1BB and OX40 are immunostimulatory receptors that enhance anti-tumor immunity. Epigenetic dysregulation (EpiG), metabolomic 
aberration (Metabo), myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells are also involved in immune evasion. 
By contrast, neoantigens (neo-Ag) derived from tumor cells and chimeric antigen receptor-modified T (CAR-T) cells elicit anti-tumor 
immunity. Immune molecules or cells promoting immune evasion are shown by red circle; epigenetic or metabolomic mechanisms 
promoting immune evasion are shown by yellow circle; and immune molecules or cells promoting anti-tumor immunity are shown by green 
circle. Antagonistic monoclonal antibodies (mAbs), CAR-T cells and small-molecule inhibitors shown in red are therapeutics targeting 
immune evasion. Agonistic mAbs and cancer vaccines shown in green are therapeutics enhancing anti-tumor immunity. Immune checkpoint 
blockers, including anti-PD-L1 mAbs (atezolizumab, avelumab and durvalumab), anti-PD-1 mAbs (nivolumab and pembrolizumab) and 
anti-CTLA4 mAb (ipilimumab), are representative immuno-oncology drugs approved for the treatment of cancer patients, whereas most of 
other immunomodulatory therapeutics are investigational drugs in clinical trials or preclinical research.
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HDAC inhibitors exert anti-tumor effects via de-repression 
of the chemokine CCL5, CXCL9 and CXCL10 (36). MYC 
is transcriptionally upregulated via genetic alterations in 
MYC, including gene rearrangement, gene amplification 
and focal amplification of the super-enhancer region (37), 
and activation of the WNT, Notch and other signaling 
pathways; it is post-translationally stabilized via PI3K-AKT 
and RAS-MAPK signaling activation (38). MYC activates 
its target genes to regulate a variety of cellular processes, 
such as proliferation, metabolism, survival and apoptosis, 
in a context-dependent manner (38,39). Taken together, 
these facts suggest that certain tumors with constitutive 
MYC overexpression might be resistant to epigenetic 
therapy-induced MYC repression and that epigenetic 
therapy-induced MYC repression might not always lead 
to upregulation of CCL5, HLA-A or HLA-B in tumor 
cells and the subsequent correction of immune evasion. 
Whole-genome sequencing and transcriptome analyses 
of tumor cells and immuno-phenotype analyses of the 
tumor microenvironment are necessary to precisely predict 
responders to epigenetic immuno-oncology therapies.

In conclusion, clinical trials and companion studies to 
develop the most effective combination immuno-oncology 
therapy and identify biomarkers that predict therapeutic 
benefits and risks of adverse effects are necessary to 
optimize the benefit-risk balance of precision medicine for 
cancer patients in the future.
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