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Introduction

Influenza virus is an enveloped virus that belongs to the 
family Orthomyxoviridae. It contains a single-stranded 
negative sense segmented genome (1). Based on the 
antigenic specificity of nucleoprotein (NP) and matrix 
protein (M), influenza viruses are classified into three 
types: A, B and C. Influenza A virus (IAV) is the major 
type that circulates in a variety of animals, such as birds, 
horses, dogs, pigs, and humans. IAV is further classified 
into 18 HA (H11–H18) and 11 NA (N1–N11) subtypes 
based on the serological properties of the primary viral 
surface proteins, hemagglutinin (HA) and neuraminidase 
(NA) (2,3). IAV remains a major threat to public health 
because of both seasonal epidemics and pandemics, which 
can occur periodically (4-6). A better understanding of the 
fundamental biology of IAV will accelerate the development 

of novel effective antiviral strategies to counter this 
reoccurring pathogen. 

Animal models, especially mouse models, are essential 
for studying influenza virus infection, host responses, 
antiviral therapeutics and vaccines (7-10). Conventional 
assays that analyze IAV infection and the effects of antivirals 
require euthanization of animals at multiple time points 
and quantification of the viral titer at various anatomic sites. 
These experimental paradigms are often time and labor. 
Furthermore, these methods cannot meet the demands 
for real-time monitoring of the spatial and temporal 
progression of infection in the same living animal and 
cannot be used for high-throughput screening of antivirals 
in vitro. 

In the past decade, bioluminescence imaging (BLI) has 
become a powerful tool for studying viral pathogenesis 
and the host immune response as well as for evaluating 
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the efficacy of antiviral strategies (11-14). In this review, 
we present current trends in the design and development 
of a replication-competent IAV carrying a bioluminescent 
reporter and its application.

Characteristics of bioluminescent proteins

Bioluminescent proteins are luciferase enzymes that 
catalyze light-producing chemical reactions in living 
organisms. Although many luminescent species exist 
in nature, only a few are commonly used in biomedical 
research: Photinus pyralis (firefly) luciferase (FLuc); sea 
pansy Renilla reniformis luciferase (RLuc); marine copepod 
Gaussia princeps luciferase (GLuc) (15-17); and a novel 
small luciferase enzyme called NanoLuc engineered from 
the deep-sea shrimp Oplophorus gracilirostris (18,19).

Firefly luciferase was the first luciferase reporter system 
that was used in mammalian cells (20,21). FLuc is 61 kDa 
in size and emits yellow to green light at a wavelength of  
562 nm, which is less-readily absorbed by tissues than 
the blue light (480 nm) emitted by RLuc and GLuc. 
The substrate of FLuc, D-luciferin, has favorable 
pharmacokinetics and sufficient bioavailability because it uses 
adenosine triphosphate (ATP), O2 and Mg2+ as cofactors. 
D-luciferin can be injected intraperitoneally and achieve a 
peak concentration within 10 min that remains stable for 
approximately 30 min in mouse models (22-24). Moreover, 
intranasal luciferin administration can also improve the 
bioluminescent signal in mice (25). D-luciferin can cross 
the blood-brain and placental barriers and has a wide 
distribution in animals (26). These properties of the firefly 
luciferase system have made it by far the most commonly 
utilized bioluminescent reporter for in vivo imaging.

RLuc and GLuc have smaller molecular weights than 
FLuc, 36 and 19.9 kDa, respectively (27-30). Both RLuc 
and GLuc use coelenterazine as substrates and produce an 
ATP independent bioluminescent reaction, which has flash 
kinetics and rapid onset and diminution of bioluminescence 
within 10 min in tissue culture and 1–2 min post 
intravenous administration in mice (31). The quantitative 
photons can be strongly affected by small variations in the 
time between substrate injection and imaging. Therefore, 
it is necessary to begin imaging rapidly at a fixed time after 
injecting coelenterazine. Increased background noise caused 
by oxidation in serum further reduces the bioavailability 
of this substrate. Despite these limits, the benefits of these 
enzymes are their relatively small size for flexible insertion 
into the viral genome, different optical properties and 

substrate, which allows discrimination from RLuc for multi-
spectral imaging (32-34). 

Recently, Hall et al. engineered a much smaller luciferase, 
19.1-kDa NanoLuc luciferase (NLuc), from the deep-sea 
shrimp Oplophorus gracilirostris (18,19). The light output 
from the reaction of NLuc and its substrate furimazine, is 
150-fold greater than both Renilla and firefly luciferase (18).  
However, like RLuc and GLuc, the blue-shifted light  
(460 nm) emitted by NLuc is readily absorbed by tissues, 
which hampers its utility in deep tissue studies.

Overall, BLI detects photons that are produced by the 
chemical reaction of luciferase enzymes and a defined 
substrate. High sensitivity, low background and real-time 
image analysis makes BLI a powerful tool in living animal 
studies. For BLI, FLuc is preferred over other luciferases 
due to its long wavelength, ease of use and effective 
diffusion of D-luciferin in animals. However, smaller 
luciferases have advantage in viruses that have the limited 
capacity of viral genomes, such as the influenza virus. 

Generation of a replication-competent IAV 
carrying a luciferase reporter

The IAV contains eight negative-sense RNA segments in its 
genome (1). Unlike a positive-sense RNA virus, the naked 
genomic RNA of IAV cannot initiate viral replication. The 
vRNP complex, which is composed of viral RNA (vRNA), 
NP and polymerase proteins (PB2, PB1, and PA), is the 
minimal functional unit. Generation of IAV requires all 
eight functional vRNP complexes be delivered into the 
host cell nucleus to initiate the production of offspring 
infectious virions (1,35). The reverse genetics of IAV had 
not been well developed until the late 1990s (36,37). By 
using this technique, the influenza virus can be rescued 
from cloned cDNA. The most widely used eight-plasmid 
system retains bi-directional transcription of the viral 
cDNA template into both RNA pol I transcribed negative-
sense viral RNA and RNA pol II transcribed positive-sense 
viral mRNA (38). The advantage of reverse genetics allows 
the incorporation of exogenous genes into the influenza 
viral genome, especially insertion of reporter genes. Since 
IAVs have a small genome, they are limited in their ability 
to accommodate relatively large reporter genes. Packaging 
signal sequences located at both the 3' and 5' ends of each 
viral RNA segment is another important factor that should 
be considered when designing complication-competent 
reporter influenza viruses (39-44). To date, multiple 
strategies have been employed to generate replication 
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competent influenza viruses carrying bioluminescent 
reporter genes.

Heaton et al. (45) chose PB2 as the target segment and 
inserted Gaussia luciferase sequences into the C-terminus of 
PB2 as a fusion protein, which was separated by a 2A peptide 
from the foot-and-mouse disease virus (FMDV) (46).  
For efficient packaging of the recombinant PB2-GLuc 
segment into the viral genome, they made silent mutations in 
the PB2 open reading frame (ORF) to eliminate the original 
packaging signals and then added a 120-nucleotide (nt)  
packaging signal after the GLuc insertion upstream of the 3' 
untranslated region (UTR). In chicken embryonated eggs, 
the rescued PR8-GLuc can be replicated to approximately 
1×108 pfu/mL, which is 1 log lower in titer than that of the 
WT PR8. In BALB/c mice, the median lethal dose (LD50) 
increased by 50 to 100 times compared to WT PR8. The 
inserted GLuc gene was demonstrated to be stable at least 
over four passages in eggs.

We constructed a IAV-luc by cloning the codon-
optimized gene encoding Gaussia luciferase into the 
C-terminal end of the full-length NA-coding sequence; the 
gene was linked via a 2A autoproteolytic cleavage sequence 
from a porcine teschovirus (47,48). The growth of IAV-
luc was approximately 2 logs and 1 log lower than the 
replication titers in Madin-Darby canine kidney (MDCK) 
and in eggs, respectively. Mice infected with 106 pfu of 
IAV-luc demonstrated similar weight loss and lethality 
to infection with 103 pfu of parental PR8 virus. Both 
bioluminescence detection and sequencing analysis showed 
that the chimeric NA-GLuc segment could be stably 
maintained in the viral genome for five passages in eggs. 

Tran et al. (49) developed a reporter virus that encodes 
the small and bright NLuc appended to the C terminus of a 
PA segment in the background of the WSN virus. The PA 
fusions were further modified by inserting the 2A peptide 
form porcine teschovirus to create discrete PA and NLuc 
proteins from a polyprotein precursor. PA-2A-NLuc50,  
which had 50 nt of a repeated packaging sequence 
downstream of NLuc, was demonstrated to be able to 
replicate in culture and in mice with near-native properties, 
and the reporter construct was stably maintained.

The eighth RNA, the NS segment, encodes NS1 as well 
as the NEP/NS2 protein from a spliced mRNA. Reuther 
et al. (50) converted the NS segment into three ORFs 
encoding NS1, the RLuc/GLuc reporter and NEP/NS2, by 
two separate porcine teschovirus 2A peptides. Although the 
resulting virus-encoded luciferases revealed impaired viral 
growth compared to wild-type virus in infected cells, they 

stably expressed the reporter gene for up to four passages in 
human A549 cells. In their study, they discussed that larger 
reporter genes, such as firefly luciferase (about 2 kb) or  
β-galactosidase (about 3 kb), could not be inserted into the 
IAV genome, suggesting that there is a length restriction 
when selecting a reporter to generate a replication-
competent reporter virus. 

Unlike the above strategies of bioluminescent reporter 
viruses containing a fusion protein in one gene segment, 
Sutton et al. (51) rearranged both the PB1 and NS segments 
and used a 2A peptide to enable auto-cleaved expression 
of NS2 downstream of PB1 and expression of GLuc 
downstream of the full-length NS1 gene in the background 
of a 2009 pandemic virus strain. Although both amantadine-
resistant and -sensitive GLucCa04 were significantly 
attenuated compared to the parental strain, expression 
of GLuc could be used as an indicator of amantadine 
sensitivity and anti-viral efficacy.

Applications of bioluminescent reporter 
influenza viruses

Visualization of a real-time IAV infection in living 
animals

As mentioned above, several research groups have 
successfully rescued replication-competent bioluminescent 
reporter IAVs. The benefits of using these reporter viruses 
is their ease of use, rapid tracking and ability to quantify 
viral replication in living mice at multiple time points 
without the traditional animal sacrifice and cumbersome 
virus titration of tissue samples. Furthermore, whole animal 
imaging allows investigators to identify unexpected sites of 
infection that might be missed by analyzing only selected 
tissues. Following intranasal infection of the influenza 
reporter viruses, luciferase enzymes can be expressed along 
with the viral replication in host cells. After injection 
of substrate to the infected animal, the light (photons) 
emitted by the luciferase-substrate reaction can be detected 
by using a very sensitive charge-coupled device (CCD) 
camera system. Image acquisition and bioluminescence 
measurements are controlled by computer analysis of 
emitted photons, allowing relative quantification of data. 

Several groups have imaged IAV infection in living mice 
(45,47,49-51). Bioluminescence was detected 1–2 days post-
infection in the chest and nasal passage of infected mice, 
indicating the initiation of infections. The intensity of 
photons increased and peaked over the course of infection 
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and then decreased corresponding to viral clearance by the 
host immune system. As shown in our previous study, mice 
were infected with IAV-Luc, the reporter influenza virus, 
which carrying Gaussia luciferase by nasal inoculation. 
Bioluminescence could be detected at 1 day after infection, 
peaked at 2 days and remained detectable for at least 
6 days after initiating the infection (Figure 1) (47). A 

bioluminescent reporter virus could also be used to rapidly 
assess the ability of influenza viruses to replicate and/or 
transmit to a new host species by generating human strain- 
and avian strain-like reporter viruses and visualizing their 
infection in mice (49). 

In addition to mice, Karlsson et al. utilized a reporter virus 
harboring Nanolight luciferase to investigate the dynamics 

Figure 1 Bioluminescence imaging of mice infected with IAV-Luc virus. Balb/c mice (6–8 weeks old) were infected with 106 pfu of IAV-
Luc. Mice were imaged by IVIS200 at 24 h intervals from 24 to 144 h post infection after injection of coelenterazine. IVA, influenza A virus; 
ROI, region of interest.

24 h

96 h

48 h

120 h

72 h

144 h

lA
V-

Lu
c 

10
6 
pf

u

×
10

3

Bkg sub 
Flat-fielded 
Cosmic

800

700

600

500

400

300

200

Color bar 
Min =1.55

Max =85



S2234

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2018;10(Suppl 19):S2230-S2237jtd.amegroups.com

Pan et al. Bioluminescence imaging for IAV

of influenza virus infection/transmission in ferrets (52).  
Bioluminescence was detected both in the upper and 
lower respiratory tracts of infected ferrets. The intensity 
of bioluminescence correlates well with the viral load in 
tissues. This system was then exploited to track airborne 
dissemination of influenza virus between infected and 
naïve ferrets. Similar to donor animals, bioluminescence 
was easily detected directly in the nasal wash of all contact 
ferrets. These results demonstrated the potential of BLI to 
assess the tissue distribution and transmissibility of infection 
in larger animal models.

Evaluation and screening of antiviral therapeutics

BLI enables easy and rapid quantification of virus 
replication, which makes it an efficient antiviral screening 
tool both in vitro and in vivo. Secreted expression of 
Gaussia luciferase into infected cell cultures is of significant 
advantage to develop high-throughput antiviral compound 
screening. Eckert and colleagues (53) demonstrated that the 
enzymatic activity of GLuc correlates with the viral titers 
produced by infected cells. For proof-of-principle, they 
established fast and sensitive assays to screen the antiviral 
activity of the neuraminidase inhibitor (NAI) zanamivir, 
host cell interferon-inducible transmembrane (IFITM)  
proteins 1–3 and a modulator for endosomal cholesterol. 
By using amantadine sensitive strains of GLucCa04 
reporter viruses, the detected IC50 values of amantadine 
were consistent with the published values. Furthermore, 
Sens/GLucCa04 has the potential to accelerate in vitro 
antiviral screening in cells by shortening the incubation 
period to 16 hours and less than 10 min for luciferase 
detection (51).

The possibility of using BLI to evaluate the efficacy of 
monoclonal antibodies and antiviral serum was also tested 
in living mice (45,47). The ability of the neutralizing 
antibodies to alleviate influenza virus infection has been 
examined by passive transfer experiments (54). IVIS imaging 
showed that both the luciferase-positive area and signal 
strength of antibody-treated mice significantly reduced 
compared to the levels of control-treated mice. The viral 
titers of lung homogenate l also had good correlation with 
quantification of the photo flux. It is important to note that 
the imaging of mice can clearly differ between antiviral 
serum treated mice and untreated mice at a very early stage 
when there is no difference in body weight changes. These 
results confirmed that BLI analysis allows convenient and 
highly sensitive prediction of an antibody’s therapeutic 

outcome in vivo.
The development of a high-throughput screening 

protocol for the identification of novel antivirals against 
influenza and other infectious diseases is urgently needed 
to treat emerging resistant mutants. Yan et al. established an 
efficient human cellular co-infection system of respiratory 
syncytial virus (RSV) carrying the firefly luciferase reporter 
combined with IAV harboring nano-luciferase (55). By using 
this system, they developed and validated a high throughput 
screening (HTS) assay for the simultaneous discovery of 
pathogen- and host-targeted hit candidates against either 
IAV or RSV. In a proof-of-concept screen of a compound 
library, this dual-pathogen protocol had high efficiency and 
a good cost.

Neutralizing antibodies play a major role in protecting 
against IAV infection and disease. The standard assay 
currently used to measure IAV neutralization is the 
microneutralization (MN) assay, which is divided into 
two parts: a virus neutralization assay and enzyme-linked 
immunosorbent assay (ELISA) to detect the presence of 
NP protein in infected cells (56). However, ELISA is time 
consuming and not readily adaptable to high-throughput 
technology. Attempts have already begun to develop a 
simple, rapid, high-throughput IAV MN assay by using 
bioluminescent reporter IAVs, which could be of great value 
to influenza vaccine development (51).

Conclusions

In summary, by developing and applying replication-
competent reporter influenza viruses carrying the luciferase 
enzyme, BLI has been proven to be a powerful tool for 
studying and monitoring viral infections, screening antiviral 
compounds, and detecting specific or broadly reactive NAbs 
of IAV in vivo and in vitro. However, the small genome 
of IAV is much less tolerant of large foreign insertions. 
In this regard, developments of novel small luciferases or 
variants that produce a high yield signal near the infrared 
wavelength, and the better understanding of the regulation 
of viral genome replication and gene expression, are still 
needed to further improve bioluminescence technology 
imaging in IAV. 
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