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Introduction

Chronic obstructive pulmonary disease (COPD) will 
become a leading cause of death worldwide over the 
next few years (1-4). Impairment of the patients’ exercise 
capacity and quality of life have been  both attributed 

to muscle dysfunction, defined as the loss of either 
strength or endurance properties of muscles (Figure 1) (5). 
Muscle dysfunction is one of the most relevant systemic 
manifestations of patients with COPD. Muscle mass loss or 
atrophy, especially in the lower limbs, is usually associated 
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with impaired function of those muscles in COPD patients. 
Moreover, other comorbidities, which are frequent in 
patients with COPD, may further contribute to the loss 
of muscle mass and function seen in these patients. For 
instance, reduced physical activity, malnutrition, chronic 
heart failure, pulmonary hypertension may further 
deteriorate muscle function and mass in COPD patients 
(5,6). Despite that COPD skeletal muscle dysfunction 
may affect both ventilatory and limb muscles, the latter 
are usually more severely affected. Interestingly, survival 
and COPD mortality are negatively influenced by both 
dysfunction of the lower limb muscles and impaired muscle 
mass as measured by mid-thigh cross-sectional area (5,7-9).  
Additionally, COPD exacerbations also rapidly induce 
loss of muscle mass and function through the activation 
of several biological pathways and systems. The risk of 
hypercapnic respiratory failure and exercise limitation are 
also very prominent features in COPD patients during 
acute exacerbations, which may lead to increased risk of 
death in these patients (10). 

Whether muscle dysfunction and mass loss occur in 
other respiratory conditions has not been sufficiently 
elucidated compared to literature published in the field 
of COPD. Therefore, this should be a matter for future 
research. Nonetheless, COPD muscle dysfunction has 
drawn most of the investigators’ attention probably as a 
consequence of the high prevalence of this condition as 
well as the socioeconomic burden of the costs related to 
the patients’ management and treatment in the last two 
decades. In the current review, we offer an overview of the 
most relevant biological mechanisms that underlie muscle 
dysfunction and wasting in patients with COPD. Those 
biological mechanisms may offer a niche for the design 
of specific therapeutic targets that may alleviate muscle 
dysfunction and loss in patients with COPD. It should be 

mentioned that muscle dysfunction of the lower limbs and 
that of the respiratory muscles are reviewed independently 
in the article. 

Epidemics of skeletal muscle dysfunction in COPD

In general, muscles of the lower limbs in COPD patients 
exhibit greater susceptibility to fatigue than age-matched 
healthy subjects (11-15). Strength and endurance properties 
are impaired in the lower limb muscles of patients with 
COPD (Figure 1) (16-19). Although strength is not the 
most sensitive surrogate to evaluate muscle function in the 
patients, for practical reasons it is commonly used in clinical 
settings. 

Poor muscle function and wasting are common systemic 
manifestations in COPD patients. Indeed, mid-thigh cross-
sectional area and quadriceps weakness (defined as a decline 
in the ability to generate force), respectively, strongly 
influence exercise capacity and quality of life (20-22).  
Additionally, muscle weakness and atrophy lead to an 
increase in the use of health care resources (23), and are 
predictors of mortality in patients with COPD (7-9).

Q u a d r i c e p s  m u s c l e  d y s f u n c t i o n  o c c u r r e d  i n 
approximately one third of the COPD patients, even 
at early stages of their disease as demonstrated in a 
multicenter European-based study (24). The proportion of 
patients with muscle weakness was similar in the different 
participating countries regardless of the patients’ airway 
obstruction (24). The prevalence of muscle weakness 
among the patients did not significantly correlate with 
disease severity as measured by Global Initiative for COPD 
(GOLD) stages (24). Nonetheless, the prevalence of COPD 
muscle weakness was associated with BODE (body mass 
index, airflow obstruction, dyspnea, exercise capacity) 
and dyspnea scores (24). In another study, quadriceps 

Figure 1 Schematic representation on how the two main properties of skeletal muscle contraction (strength and endurance) determine 
muscle performance or weakness when a significant reduction in muscle force generation (the most commonly studied parameter in COPD 
patients) occurs. 
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strength and rectus femoris cross-sectional area were also 
significantly reduced in a cohort of 161 COPD patients 
that were evenly distributed from GOLD stage I to stage 
IV compared to a population of age-matched healthy  
controls (8). Furthermore, the decrease in endurance of 
lower limb muscles in COPD patients with normal physical 
activity and mild-to-moderate disease did not correlate 
with airway obstruction or quadriceps muscle weakness as 
demonstrated in another investigation (13). The study also 
concluded that lower limb muscle endurance was reduced 
in COPD patients even in those with a mild disease and 
that such a decrease may antecede strength impairment of 
the same muscles in COPD (13). Collectively, the reported 
findings suggest that impairments in muscle function 
(strength and/or endurance) are independent of the airway 
obstruction or lung function status in these patients. 
Therefore, skeletal muscle function should be evaluated in 
all patients with COPD irrespective of the severity of the 
lung disease. 

In COPD, despite that the ventilatory muscles undergo 
a positive adaptation (training-like effect) that renders them 
more fatigue-resistant (19,25,26), both maximal inspiratory 
and expiratory pressures (strength); and endurance of 
these muscles were consistently reduced in different 
studies (19,25-28). Ventilatory muscle dysfunction imposes 
constraints to the patients that may worsen the underlying 
chronic respiratory failure frequently present in COPD 
patients, especially in advanced stages. Furthermore, 
ventilatory muscle dysfunction associates with increased 
risk of hospital readmissions (29). On the other hand, acute 
exacerbations represent a major systemic contributor that 
equally affects both limb and respiratory muscles in patients 
with COPD (10,30). Specifically, in the ventilatory muscles, 
the need of these muscles to overcome the inspiratory loads 
imposed by the increased ventilatory demands resulting 
from the acute exacerbation may even further impair 
respiratory muscle strength. 

Multifactorial etiology of muscle dysfunction 
and atrophy in COPD: factors and biological 
mechanisms

Several factors and biological mechanisms have been 
shown to participate in the multifactorial etiology of 
respiratory and limb muscle dysfunction in COPD. 
Cigarette smoking, hypoxia, hypercapnia and acidosis, 
various metabolic alterations, malnutrition, genetics, 
systemic inflammation, aging, comorbidities, concomitant 

treatments, exacerbations, and inactivity are counted among 
the most relevant etiologic factors that contribute to muscle 
dysfunction in COPD patients through the action of several 
biological mechanisms. The contribution of several factors 
and biological mechanisms has been thoroughly discussed 
in previously published reviews (5,16-19,25). The most 
relevant biological and biochemical processes that have 
been shown to mediate muscle dysfunction and wasting in 
COPD are the following: structural abnormalities, muscle 
remodeling, oxidative stress and muscle wasting, epigenetic 
regulation of muscle mass and function, autophagy, 
metabolic derangements, and endoplasmic reticulum stress 
(5,16-19,25). Interestingly, the biological mechanisms 
involved in the pathophysiology of muscle dysfunction 
have been predominantly studied in the vastus lateralis of 
the quadriceps as well as in the diaphragm of patients with 
COPD. An overview of the most relevant etiological factors 
and mechanisms in both muscle types is given below.

Quadriceps muscle dysfunction

Cigarette smoking, genetics, hypoxia, hypercapnia and 
acidosis, metabolic derangements including vitamin D and 
testosterone deficiencies, drugs (systemic corticosteroids), 
other comorbidities, exacerbations, systemic inflammation, 
nutritional abnormalities, reduced physical activity, and 
aging are all etiologic factors that contribute to muscle 
dysfunction of the lower limbs in COPD (5,16-19) 
(Figure 2). Nevertheless, the predominance of physical 
inactivity (8), nutritional abnormalities (6,16), repeated 
exacerbations (10,30-32), and systemic corticosteroids (33) 
should be underscored above the other factors as the main 
contributors to muscle function and mass impairment, 
especially in advanced COPD. 

As shown in Figure 3, several molecular and cellular 
events take place in the lower extremity muscles, which 
mediate the effects of the different etiologic factors in the 
patients, leading to modifications in the muscle phenotype 
and function. A fiber-type switch towards a less fatigue-
resistant (phenotype from slow-twitch to fast-twitch 
fibers) is a major feature in the vastus lateralis of patients 
with advanced COPD (34-37). Furthermore, fast-twitch 
fibers are also of smaller size in patients with advanced 
COPD and poor muscle mass (34-36), thus contributing to 
muscle weakness. Additionally, factors such as aging (38), 
malnutrition (39), and systemic corticosteroid treatment (40)  
may worsen the fast-twitch fiber atrophy observed in 
COPD. Besides, a reduction in the capillary numbers 
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and contacts (41,42) that could eventually impair oxygen 
delivery to the myofibers (43-45) is another contributing 
biological mechanism. Other structural abnormalities such 
as muscle cell membrane and sarcomere damage may also 
negatively influence muscle function (36). Mitochondrial 
derangements of several types were also demonstrated to 
alter muscle function in COPD (46-48) (Figure 3). 

Chronic hypoxia induced a reduction in muscle mass 
probably as a result of the interaction of several molecular 
mediators such as inflammation (49), hypoxia inducible 
factor-1 signaling pathway (50), oxidative stress (51,52), 
and reduced oxidative enzyme capacity and capillary 
numbers (37,53). Hypercapnia, which may worsen during 
exacerbations, may also play a role in COPD muscle 
dysfunction through acidosis as it enhances ubiquitin-
proteasome proteolytic system activity and/or through a 
reduction in protein anabolism (54) (Figure 3).

Oxidative stress, defined as the imbalance between 
oxidants and antioxidants, and as measured by several 
markers such as protein oxidation and nitration and lipid 
peroxidation has been consistently shown in blood and 
limb muscles of patients with severe COPD both at rest 
and after exercise (34,36,52,55-62). Importantly, oxidative 
stress markers were also shown to inversely correlate with 

several clinical and physiological parameters such as exercise 
capacity, body composition, and quadriceps strength of the 
patients (34,36,57,58,62) (Figure 3). Although oxidative stress 
and inflammation have been previously associated, evidence 
shows that local inflammatory events do not seem to occur 
in muscles of COPD patients (34,36,52,57,59,62,63), even in 
atrophying muscles or during exacerbations.

Cigarette smoking may also contribute to l imb 
muscle dysfunction in COPD through several biological 
mechanisms such as decreased type I fiber sizes and 
proportions and reduced mitochondrial activity, while 
concomitantly causing an increase in oxidative stress levels 
in healthy smokers and experimental animal models of 
chronic exposure to cigarette smoke (59,64,65) (Figure 2).  
Other relevant molecular and cellular events that have 
been shown to mediate muscle mass loss and dysfunction 
in COPD from different etiologic factors are increased 
proteolysis (34,36), apoptosis (63), epigenetic mechanisms 
(35,66-69), increased autophagy (36) and endoplasmic 
reticulum response (unpublished observations) (Figure 3). 

Diaphragm muscle dysfunction

Given that ventilatory muscles are chronically exposed to 

Figure 2 Several etiologic factors involved in the multifactorial etiology of muscle dysfunction exert deleterious effects on the function and 
mass (deconditioning) of lower limb muscles in patients with COPD. Hence, the balance is completely skewed towards the negative side. 
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Figure 3 In lower limb muscles, several biological events that mediate the actions of the etiologic factors exert direct deleterious effects on 
muscle function, structure, and mass. Hence, the balance is completely skewed towards the negative side. 

higher inspiratory loads and must remain active throughout 
the existence of the COPD patients, they are less severely 
affected than the lower limb muscles. In the last years, 
ventilatory muscles have been studied through the analyses 
of the costal diaphragm, with very restricted access, and 
only via thoracotomy performed for clinical reasons (mainly 
lung cancer and lung volume reduction surgeries). 

In COPD patients, ventilatory mechanics is altered as a 
result of static pulmonary hyperinflation, which modifies 
thorax geometry and shortens the diaphragm length, 
and displace the muscle away from its optimal length to 
generate the required forces (16-19). Additionally, muscles 
need to overcome the increased work of breathing resulting 
from the greater elastic, resistive, and threshold inspiratory 
loads imposed by airflow limitation (16-19). These factors, 
which are inherent to the respiratory condition (ventilatory 
mechanics alterations), constitute the main contributors 
to respiratory muscle dysfunction in COPD (Figure 4). 
However, it has also been shown that in COPD patients, 
the respiratory muscles undergo a positive adaptation 
(training-like effect) that renders them, especially the 
diaphragm, more fatigue-resistant compared to diaphragm 
forces developed by healthy subjects when exposed to 
identical lung volumes (16-19) (Figure 4). Finally, similar 

etiologic factors involved in the dysfunction of the lower 
limb muscles may also affect, to different degrees, the 
respiratory muscles in COPD: cigarette smoke, hypoxia, 
hypercapnia and acidosis, metabolic derangements, 
malnutrition, genetics, systemic inflammation, aging, 
comorbidities, concomitant treatments, exacerbations, and 
reduced physical activity (5,16-19) (Figure 4). Nevertheless, 
in COPD respiratory muscle dysfunction, exacerbations, 
nutritional abnormalities, and aging are likely to play a key 
role above the other contributing factors (5,16-19). 

As illustrated in Figure 5, several molecular and cellular 
events that take place in the lower limb muscles also seem 
to mediate the effects of the different etiologic factors 
that negatively influence phenotype and function in the 
respiratory muscles. Other specific cellular events  mediate 
beneficial effects (adaptive biological mediators) on the 
diaphragm of COPD patient such as shorter sarcomere 
length, higher proportions of slow-twitch fibers and 
myoglobin content, increased capillary contacts per fiber, 
increased mitochondrial density, and enhanced aerobic 
enzyme capacity [for specific review see (16-19)] (Figure 5).  
On this basis, the adaptive mechanisms may offset to certain 
extent the adverse phenotypic features in the diaphragm of 
patients with COPD. In these patients, the net effect on the 
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ventilatory muscle function will depend on the balance between 
deleterious and adaptive biological mediators (Figure 5),  
which may also differ between stable and acute conditions 
within the same patient. Interestingly, in the external 
intercostal muscle of COPD patients, similar adaptive cellular 
events may also take place (16-19). In advanced COPD, 
however, biological mechanisms concomitantly affecting 
the lower limbs such as injury, oxidative stress, enhanced 
proteolysis and reduced anabolism, apoptosis, and epigenetic 
events will prevail over the adaptive mechanisms (Figure 5).

Concluding remarks

Skeletal muscle dysfunction is a major systemic manifestation 
in patients with respiratory conditions. In the last two 
decades, most of the research in this field has been devoted 
to the elucidation of the prevalence and etiology of muscle 
dysfunction in COPD. Muscle weakness and wasting predict 
morbidity and mortality in patients with COPD. However, 
the mechanisms potentially linking muscle dysfunction and 

the primary organ disease remain to be fully elucidated. 
Current avenues of research in this field focus on the 
identification of biological mechanisms that may help design 
novel therapeutic strategies to better treat muscle dysfunction 
in COPD regardless of the lung disease. More research is 
needed to identify other mechanisms that could be targeted 
with specific therapies. Clinical trials in which currently 
available therapies were tested should be conducted in the 
near future, especially those emerging from studies in animal 
models, in which muscle function and mass loss were shown 
to be recovered. Moreover, interest on the elucidation of 
the pathophysiology of muscle dysfunction in the critically 
ill patient is also growing. Evidence emerging from the field 
of COPD muscle dysfunction should be used as a model 
to enhancing current knowledge on the specific role of 
muscle weakness and dysfunction in patients bearing other 
chronic respiratory disorders, in which muscle dysfunction 
is prevalent, as well as in critical illness. Importantly, the 
specific contribution to muscle dysfunction of therapies 
commonly prescribed in patients with chronic respiratory 

Figure 4 Schematic representation on how the different reported etiologic factors contribute to respiratory muscle dysfunction in COPD 
through the action of several biological mechanisms that modify muscle phenotype and function in the patients. Notice that in the COPD 
respiratory muscle dysfunction, as opposed to dysfunction of the lower limb muscles, several etiologic factors may exert beneficial effects 
(training-like effect) on muscle mass and performance through the action of different biological mediators (adaptive mechanisms) that lead 
to adaptation of the inspiratory muscles in COPD. These adaptive mechanisms partly counterbalance the deleterious effects of other factors 
and mechanisms of a rather systemic nature (depicted in the left-hand side of the figure). 
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disorders and critical illness such as systemic corticosteroids 
and immunosuppressant drugs should also be the focus of 
future research in those patients. Given its prognostic value, 
the assessment of skeletal muscle dysfunction should be 
included in the routine evaluation of patients with chronic 
respiratory disorders and in critical care settings. 
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