Introduction

With the careful preoperative patient selection, lung cancer involving the carina can be surgically treated with satisfactory immediate and long-term results (1). The rapid development of minimally invasive thoracic surgery and surgeons’ acquisition of experience and new skills in this type of surgery has led to increased confidence among surgeons in their ability to perform the most challenging procedures through these techniques. In recent years, some reports have been published describing the newly acquired techniques for performing most complex operations in this field (2-4). Our department is considered to be an advanced and very high-volume center for minimally invasive thoracic surgery, dozens of uniportal VATS operations are performed daily in a routine manner in our department. After we have overstepped our learning curve in performing the standard anatomical lung resections through this technique, we found ourselves able to conduct more complex procedures such as the one we describe here through this article.

Patient and workup

A 56-year-old, male, heavy smoker patient presented to our clinic with complaints of worsening intermittent cough and hemoptysis for the last year. With the thorough history and examination, the patient denied any loss of weight, fever, hoarseness of voice or any other complaint. Physical examination was unremarkable and blood tests showed no abnormalities. CT scan was described in Figure 1A. PET-CT revealed (4 SUV) pathological uptake in the lesion with no FDG uptake in the mediastinum or in another place. We also did the brain and bone scan that showed negative.

Cardiac and pulmonary functions were within normal values. Flexible bronchoscopy was described in Figure 1B. The bronchoscope was advanced beyond the tumor in order to explore the rest of the right bronchial tree and Figure 1C shows the view of bronchus intermedius. EBUS revealed no lymph nodes involvement. A decision to perform a carinal sleeve pneumonectomy was made.

Pre-operative preparation

The operation was scheduled to be performed with intercostal uniportal VATS technique. The patient was intubated with left double lumen endotracheal tube (39 Fr), CVP line, arterial line, and urinary catheters were inserted before the beginning of the surgery.

Equipment and performance card

Full HD thoracoscopic camera (Karl Storz®), vascular tourniquet and wound protector (Changzhou Company Ltd.), special instruments designed for VATS surgery (Shanghai Medical Instruments Group Ltd.), TA ™ staplers (Covidien-Medtronic), and PROLENE® sutures.

Procedure

Under general anesthesia, left double-lumen endotracheal intubation, insertion of venous access lines, arterial line and urinary catheter. The patient positioned on left decubitus position. Four cm incision was performed in the mid-axillary line at the level of 4th intercostal space. After adhesiolysis using cautery and in a sequential manner, the
Figure 1 Preoperation test. (A) CT scan revealed a 2 cm endobronchial lesion invading the right main bronchus propagating proximally into the level of carina with no obvious mediastinal lymphadenopathy; (B) flexible bronchoscopy revealed a smooth rounded endobronchial lesion of the right main bronchus and extending very close to the bifurcation of the carina; (C) multiple necrotic white lesions were noticed on the wall of bronchus intermedius and the biopsy revealed a diagnosis of squamous cell carcinoma from the main lesion and atypical hyperplasia from the lesions in the bronchus intermedius.
right inferior and superior pulmonary vein was dissected, encircled, and divided using 30 mm white reload Endo GIA™ stapler. The right main pulmonary artery thereafter dissected, encircled, and divided using 45 mm golden Endo GIA™ curved tip reload. After that, the azygos vein was divided using 30 mm white reload Endo GIA™ and mediastinal lymphadenectomy was performed in upper paratracheal (R2), lower paratracheal (R4) (including Azygos Nodes) and subcarinal (R7) using energy device (LigaSure™). The distal trachea and the left main bronchus were fully exposed, mobilized, and encircled with silk slings (Figure 2A), tourniquets were used to secure these slings in order to get control and apply traction during the process of anastomosis. In this stage a 15-blade scalpel attached to a curved holder used to transect the trachea above the carina and close to the origin of the left main bronchus then the right lung was removed out of the pleural cavity inside a retrieval bag. While maintaining the

Figure 2 Operation and follow up. (A) Exposed trachea and main bronchial; (B) anastomosis of the back wall and suction for high-frequency ventilation; (C) follow up 6-month after surgery.
endotracheal tube within the left bronchus, the surgical
margins were circumferentially extended. Here we began
to create the anastomosis between the distal trachea and
left main bronchus and using running non-absorbable two
needles (PROLENE® 3/0) continuous suture. We started
to generate the anastomosis from the posterior wall in an
anti-clockwise direction. It is important to note the vitality
of the suction device during the anastomosis process,
as it has great importance in directing the two ends of
anastomosis and adjusting the angle to facilitate the sewing.
After applying several sutures at the posterior part of
the anastomosis, the endotracheal tube was withdrawn and
replaced with a narrow "suction" tube for high-frequency
ventilation (Figure 2B), and then the rest of the anastomosis
was completed in the opposite direction (clockwise). By
the end of the anastomosis, the knot was placed outside the
bronchial lumen. The competency of the anastomosis was
checked, and hemostasis was done. A single (28 French)
chest drain was introduced to the pleural cavity through the
same incision which was closed in layers thereafter. Frozen
section confirmed that all the surgical margins were free
of tumor cells, total surgical time was (120 minutes) and
estimated blood loss was (200 cc).

Post-operative management

Post-operative course was uneventful. Postoperative
radiographic X-ray showed a fully expanded left lung with
no abnormalities. A chest drain was removed in POD (5),
and the patient was discharged in POD (6). Follow-up
bronchoscopy 6 months after the surgery revealed good
healing of the anastomosis with no evidence for stenosis
or gross recurrence of the tumor (Figure 2C). Follow up
CT scan 6 months after the operation showed no evidence
for recurrence or complication. The final diagnosis was
2 cm × 2 cm squamous cell carcinoma tumor with of
lung with endobronchial mucosal extension to bronchus
intermedius (T4N0M0) (Figure 3).

Discussion

Sleeve pneumonectomy is a procedure in which the involved
lung with its main stem bronchus and part of the carina
and/or distal trachea are removed. The remaining lung is
re-implanted to the distal trachea. Although technically
challenging and demanding, sleeve pneumonectomy
considered to be the surgery of choice for resectable tumors
invading the tracheobronchial angle.

For decades, this type of operations was performed
through the conventional open thoracotomy approach. But
the revolution in minimal invasive thoracoscopic techniques,
which has recently emerged, has imposed itself strongly
in this field due to its advantages in reducing the surgical
trauma and postoperative pain (5,6). The publication of the
report on the first uniportal VATS lobectomy performed
by Diego Gonzalez-Rivas and his group published in
2011 has opened the way for more complex operations
to be conducted by the same technique (7). This is what
happened. In 2013 Gonzalez and his colleagues reported
the first uniportal VATS sleeve lobectomy (8). It is clear
that these operations are not technically easy and require
experienced surgeons to be safely and correctly conducted.
The procedure may be unsafe if performed by a surgeon
who did not exceed the required learning curve.

The authors believe that in expert hands uniportal
thoracoscopic sleeve lung resections are safe and feasible.
and Uniportal VATS sleeve lobectomy or pneumonectomy is a considerable choice for those intrabronchial lung cancers.

Tips, tricks and pitfalls

(I) The location of the incision is crucial in sleeve resections, the anterior axillary line of the 4th intercostal space is the most suitable site to create the incision since it provides ideal angles for visualization and accomplishment of the anastomosis.

(II) It is preferred to divide the veins before the artery, this may provide more suitable angles for stapling the main artery.

(III) The dissection of the tissue around the distal trachea and the left main bronchus should be extensive enough to expose and as much as possible the area. But at the same time, surgeon must be careful because excessive dissection may harm the anastomosis as it may disconnect blood supply from that area.

(IV) Before circumferential resection, we first performed the wedge resection of the right main bronchus from the right lung to take the specimen out and reconstructed the carina, so as to accomplish enough time and space to a satisfactory anastomosis. In the early stage of anastomosis, the tracheal cannula need to be retreated and the sputum suction tube is used for high frequency ventilation. The anastomosis started in the posterior wall and followed by that in anterior wall during which the tracheal cannula can be introduced again (shown in the Figure 4).

Acknowledgements

None.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

Informed Consent: Written informed consent was obtained from the patient for publication of this case report and any accompanying images.

References

Cite this article as: Yang C, Abu Akar F, Chen J, Jinag L. Right sleeve pneumonectomy via uniportal video-assisted thoracoscopic approach. J Thorac Dis 2018;10(5):E391-E396. doi: 10.21037/jtd.2018.05.58