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Introduction

Atrial fibrillation (AF) is the most common arrhythmia 
encountered in clinical practice, and case volume is expected to 
increase as the population ages (1). AF management consists of 
anticoagulation, rate control, and—for symptomatic patients—
antiarrhythmic drugs and ablation to restore sinus rhythm (2).  
However, the efficacy of antiarrhythmic drugs remains poor, 
and recent trials challenge the use of pharmacologic therapy 
to maintain sinus rhythm (3,4). Ablation, too, remains 
suboptimal, given modest safety (5) and efficacy results (6), 
even in highly experienced centers. 

Since the studies of pulmonary vein ectopy ablation in the 
treatment of AF (7), the pulmonary veins have been the focus 
of AF ablation therapy (8-11). Although effective, ablation 
response rate remains around 50% to 70% single to multi-
procedure success rate at 1 year in paroxysmal AF patients 
(9,10,12) with lower success in persistent AF patients (8).  
This has prompted a search (8,13) for additional targets 
of ablation therapy including complex fractionated atrial 
electrograms (CFAE) (14), whose mechanistic significance 

remains unclear, or areas of high dominant frequency (15-17) 
and ganglionated plexus sites (18).

Recently, a growing body of work shows that rotors, 
identified using near-real-time mapping of AF (19), are 
both spatially and temporally conserved (20) and thus 
amenable for ablation (21). Mechanistic proof of concept 
is supported by the ability of brief targeted rotor ablation 
alone (22) to eliminate AF acutely (23) and on long-term 
follow-up in the precise trial. Clinically, Focal Impulse and 
Rotor Modulation (FIRM) has now been shown by many 
laboratories to substantially improve the results of AF 
ablation on long term follow-up in patients with paroxysmal 
and persistent AF (24,25). The purpose of this review is to 
discuss the conceptual basis for rotors, evidence for their 
existence, strategies and pitfalls of rotor mapping, and the 
role of rotors in guiding substrate-based ablation for AF.

Theory and evidence of rotors

The idea of functional reentry as the driver for AF was first 
proposed by Lewis in the 1920s (26). Allessie and colleagues 
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subsequently proposed the leading circle theory of reentry 
(Figure 1A) in the 1970s (27). Rotors altered this concept by 
proposing a region of extreme wave curvature as the center 
of reentry where conduction velocity approximates zero and 
detectable by phase mapping. The first experimental evidence 
of rotors was reported by Davidenko et al. in 1990 (28),  
subsequently supported by evidence from modeling and 
optical mapping of isolated animal heart preparations by 
Jalife and others (29-31). 

With high temporal and spatial resolution, optical 
mapping and high-density epicardial electrode arrays (32) 
have been the principal methods by which rotors were 
explored. Subsequent work using these techniques in a 
canine model of AF found ablation of rotor sites suppresses 
subsequent AF inducibility (33). Unfortunately, these 
methods are impractical for clinical use, and evidence for 
rotors in human AF was scarce until recently.

Characterizing rotors: from the bench to the 
bedside

The term “rotor” is applied to a number of different 
concepts. One accepted definition from the basic literature 
is a phase singularity whose reverberations radiate 
“spiral waves” at high speed into surrounding tissue (34). 
Clinically, the most tangible feature of a rotor is repetitive, 
cyclic activation around a core (29,30), and while this is 
the simplest visual criterion for identifying rotors in phase 
maps (FIRM) or isochronal images, it does not capture the 
essence of detecting or defining a rotor.

Clinically, while a rotor is superficially similar to reentry 
around a region of scar, the two mechanisms are quite 
different. In a reentry around a scar, the central obstacle is 
‘inert’ and the surrounding reentrant circuit is the principal 
mechanism to which ablation is applied. Conversely, for a 
rotor, the singularity (or ‘core’) is the principal mechanism, 
while the surrounding ‘spiral waves’ disorganize and 
fuse passively with the milieu (fibrillatory conduction). 
Accordingly, therapy is directed to the core. This central 
difference summarizes why rotors are difficult to detect using 
approaches that do not take into consideration the impact 
of repolarization dynamics on wave break from a spiral wave 
and/or fusion of wavelets from the milieu with spiral waves.

Mechanistically, reentry in a rotor is functional (35) 
rather than anatomic, and has no [or a highly limited (36)] 
excitable gap. Because rotor cores exhibit functional reentry, 
rotors can precess (move) within a defined area as shown 
in animal models (37) and in 2-3 cm2 areas humans (20). 

Such precession may contribute to the apparent global 
disorganization seen in AF.

Another property of rotors is that they are the source of 
fibrillatory wavefronts (29), and thus “control” surrounding 
tissue that activates passively, and often via fibrillatory 
conduction (Figure 1B, arrows to 1:1 breakdown). Such 
wavefronts can collide/fuse, and exhibit rotational activation 
within a variable and often small spatial domain. If multiple 
rotors are present simultaneously, distal wavefronts collide 
at varying locations, also contributing to the appearance of 
global disorganization.

Endocardial or epicardial rotors can be projected onto 
2-dimensional (2D) movies, or isochronal maps for printed 
text. Such 2-D projections of rotors are termed spiral 
waves (38), and are characterized by a small, unexcited core 
termed a phase singularity. Phase singularities are sites 
about which all phases of the depolarization/repolarization 
cycle exist simultaneously, and are important because 
they identify tissue capable of supporting rotors. First 
demonstrated by computational modeling (39), 3D rotors 
are termed scroll waves (Figure 1C), and have recently 
been shown experimentally (40). In scroll waves, the phase 
singularity is a linear structure termed a filament (39), about 
which functional reentry occurs.

Filaments are typically discussed as spanning endocardium 
to epicardium (I type filaments, Figure 1D) (39), producing 
spiral waves observable on both surfaces. However, 
additional configurations are possible including U type filaments 
with both ends of the filament located on the same surface, 
and O type filaments in which the filament assumes a closed 
configuration completely within myocardial tissue (34). For U 
type and O type filaments, mapping of a surface without a 
filament terminus shows focal activity (39). Surfaces with 
two filament ends display contra-rotating spirals and figure-
of-8 reentry.

Ionic and structural basis for rotors

A number of ionic changes have been shown to promote 
the development of rotors in experimental models. Atrial 
tissue from AF patients demonstrates an up-regulation 
in IK1 expression (41). Experimentally, transgenic mice 
overexpressing IK1 demonstrated rapid, stable rotors which 
were not present in control mice (42). Studies in transfected 
monolayers of cardiac cells have shown that IKS plays an 
important role as well (43), promoting rotor formation. 
Other work has shown that the mild hyperpolarization from 
enhanced repolarization modifies INa availability (44), altering 
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wavefront conduction. Abnormal calcium dynamics have been 
implicated in the initiation of torsades des pointes (45), but 
the precise relationship between ICa and AF rotors remains 
controversial (46).

Structurally, delayed gadolinium enhancement magnetic 
resonance imaging (DE-MRI) studies show that scar burden 
predicts AF recurrence post ablation (47,48), suggesting that 
AF in patients with atrial scar reflects mechanisms outside 
the pulmonary veins. Indeed, areas of patchy fibrosis are 
sites of slow conduction and altered repolarization dynamics 
that may form and stabilize rotors; in explanted hearts, 
rotors are predominantly associated with areas of scar and 
microfibrosis (49) identified histologically. Ongoing clinical 
studies are examining the relationship between AF rotors 
identified by FIRM and other techniques and areas of 
fibrosis on DE-MRI (50).

AF rotor mapping: techniques

The conventional ablation with or without Focal Impulse 
and Rotor Modulation (CONFIRM) trial, presented in 
2011 (24), demonstrated that rotors and focal sources were 
present in nearly all patients with paroxysmal, persistent, 
and long-standing persistent AF, and that ablation of these 
sources nearly doubled the single-procedure ablation 
freedom from AF at 1 year (51) and now shown to be 
durable at 3 years (52). Rotors were identified in near real-
time using multielectrode contact basket catheters to record 
AF (Figure 2) then phase-based algorithms incorporating the 
dynamic response of repolarization (53-55) and conduction 
(54,56,57) in these patients to abrupt and gradual changes 
in rate.

This experimental approach was chosen for a number of 

Figure 1 Rotor mechanisms and representations. (A) The first theory of functional reentry was leading circle reentry. In this model, reentry 
occurs about a functionally refractory core, which is in contrast to our current understanding of rotors which revolve around a small, unexcited, 
but not refractory core. (B) Isochronal plot of a right atrial rotor (arrow) detected by endocardial basket catheters and phase-mapping. 
Orientation: The right atrium is opened along its meridian, with the lateral tricuspid annulus folded laterally and medial annulus medially. (C) 
The 3 dimensional scroll wave in a computational model. (D) Filament (green curve) between endocardial and epicardial termini (red points) 
about which functional reentry occurs in a 3 dimensional simulation of a rotor.
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reasons. First, although it is theoretically possible to map 
stationary rotational cycles (e.g., in macro-reentry) with 
a minimal number of (approximately 4) electrodes (58),  
fibrillatory rotors precess (i.e., wobble) over time in animal 
models (37) and humans (20). Figure 3A,B shows the 
location of the AF rotor core as it precesses in a complex 
path within a stable region bounded by limited numbers of 
electrodes. Thus it is necessary to map panoramically (20) 
to encompass rotor trajectories as completely as possible 
(Figure 3C). 

Second, a major obstacle to AF mapping has been 
separating near field activation from far-field noise in 
atrial signals. This is particularly important for noncontact 

mapping, in which electrogram reproducibility decreases 
with distance from the mapping catheter (59). Earlier work 
using monophasic action potential catheters demonstrated 
the importance of accurately determining local activation (60), 
and thus, biatrial contact mapping was chosen to improve the 
probability of good quality signals encompassing a significant 
proportion of the atrial surface (61).

Following signal recording, electrograms are exported 
to a commercially available computational system 
(RhythmView, Topera Medical, Palo Alto, CA, USA), 

Figure 3 Rotor core precession (‘wobble’) obscures detection of 
rotors by activation mapping at fixed electrodes. (A) Clockwise rotor 
in the inferior left atrium, computed by phase mapping of multiple 
cycles (FIRM movies). This isochronal (contour) map of 1 cycle 
superficially resembles macro-reentry, and rotation may be expected 
on electrodes 1-8. However, (B) Rotor Core Precesses (‘Wobbles’) 
rapidly on Phase mapping (FIRM) during and between cycles. Fixed 
electrodes 1-8 are thus unlikely to track rotation. (C) Expanded view: 
as the rotor core precesses from the red location (α) to brown (β) in 
100 ms, to orange (γ) at 200 ms, electrodes 1-8 would have to track 
this rapid trajectory to see rotation. FIRM mapping includes phase 
mapping to track this trajectory with analyses of repolarization/
conduction restitution to account for disruption of spiral waves 
by fusion from the fibrillatory milieu (Figure 1B) [modified, with 
permission from Narayan et al. (20)]. Orientation: The right atrium 
is opened along its meridian, with the lateral tricuspid annulus folded 
laterally and medial annulus medially. The left atrium is opened 
horizontally through the mitral valve, and its superior and inferior 
halves folded upwards and downwards.
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Figure 2 Strengths and Limitations of Contact Mapping for 
Focal Impulse and Rotor Mapping (FIRM). Broad coverage of 
the atria can reveal rotors in variable patient-specific regions 
easily overlooked by limited mapping at pre-determined sites. (A) 
Fluoroscopy of basket catheter in left atrium with good contact. 
Analysis will have high confidence except for electrodes near 
tricuspid or mitral annuli, where rotors are unlikely to form (34). 
(B) Fluoroscopy of basket catheter with poor contact particularly 
near septal left atrium. (C) Intracardiac Echocardiogram of Basket 
catheter in a patient with LA diameter 8.4 cm. In cases (B) and (C), 
results of FIRM will be suboptimal. Electrodes of poor contact 
reduce the confidence of maps, and so FIRM mapping is less 
satisfactory in atria larger than the current >55 mm diameter of the 
largest baskets.
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which uses phase-based algorithms in conjunction with 
computational algorithms incorporating repolarization 
dynamics (54,57,62), conduction dynamics (54,56), and 
compensation for AF rate oscillations (53) to determine 
wavefront propagation. Diagnostic movies are then 
created for physician interpretation and ablation planning. 
Physician training for movie interpretation is moderate, and 
includes practice case review and interpretation such that 
good clinical results can be achieved with a rapid learning 
curve (25).

Clinical approach and results of FIRM mapping of AF

FIRM mapping identified an average of 2.1±1.0 concurrent 
rotors or focal sources in the CONFIRM trial (24), that has 
increased slightly to ≈2.5 sources per patient in recent studies 
with better basket placement and repeated FIRM maps (25) 
that were not possible in CONFIRM. In a population of 
whom two thirds had persistent AF, approximately one-third 
of sources lie in the right atrium away from the superior 
vena cava, and hence in regions that would normally not be 
targeted for ablation. AF rotors and focal sources identified 

by FIRM are spatiotemporally stable for periods of hours 
or even months, as described in our early work (61) and 
in recent external reports from Miller et al. (63). Stability 
provides a rationale for limited ablation that is less clear for 
targets that migrate throughout the atria.

FIRM-guided therapy targets each rotor and focal source 
for ablation, with the endpoint of rotor/source elimination 
on repeated FIRM mapping. In the CONFIRM trial (24) 
and independent external laboratories, elimination of FIRM-
sources takes 5-10 minutes per source, for an average of  
15-20 minutes FIRM-guided ablation time per case (25). 
FIRM-guided ablation may terminate AF, typically to sinus 
rhythm (Figure 4A,B) as first shown outside San Diego by 
Shivkumar et al. (64) and in a larger series by Kowal et al. (65).  
However,  results  of  the on-treatment analysis  of 
CONFIRM (21) and the PRECISE trial (22) show that 
elimination of AF rotors/sources on repeat FIRM mapping 
is a more effective endpoint. Figure 5A,B shows the 3Y 
very long term outcome in the CONFIRM trial, in which  
FIRM + PVI ablation provided substantially higher freedom 
from AF than conventional ablation after multiple and a 
single procedure.

Figure 4 AF termination to sinus rhythm by FIRM-guided ablation at the high lateral left atrium. The FIRM map (A) shows a clockwise 
rotor (arrow) with fusion/collision of spiral arms by fibrillatory waves (block/arrows). Ablation at this rotor terminated AF to sinus rhythm (B, 
top), with corresponding fluoroscopic images in the bottom panels (B, bottom) showing coronary sinus catheter and barium in the esophagus 
[from Shivkumar et al. (64)]. Orientation: As in Figure 1B. AF, atrial fibrillation; FIRM, Focal Impulse and Rotor Modulation.
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AF rotor mapping: pitfalls

A clear technical limitation to AF mapping is electrogram 
contact as we have reported (19), particularly in atria whose 
dimensions exceed the size of commercially available 
basket catheters (Figure 2B) as included in external reports 
by Shivkumar et al. (64) and Miller et al. (25). While not 
recommended, successful ablation in such patients is 
possible when rotor locations coincide with areas of good 
electrode-tissue apposition—although electrodes opposite 
these sites will typically then show marginal or poor contact. 
Multiple basket manipulations can then theoretically be 
used to sequentially sample regions of the atrium. A second 
related limitation is poor electrode coverage in the septal 
aspect of the left atrium (Figure 2C). Future improvements 
in basket design and maneuverability are required to 
fully exploit current rotor mapping technology. A final 
consideration in FIRM ablation is the learning curve for 
reading the potentially complex maps, although this was 
relatively rapid in the recent series by Miller et al. (25). 
Automated detection algorithms are being developed that 
may further help this process. 

Relationship of rotors to CFAE and ganglionated 
plexi (GP)

There has been a significant amount of interest in CFAE as 
markers of AF drivers (14). CFAE have multiple definitions, 
include electrograms with multiple deflections, very short 

cycle length (<120 ms) (14), or continuous activation (66). 
Although results using this technique are mixed (67,68), 
it is frequently considered in patients with persistent or 
ablation-refractory AF (8). However, the mechanisms of 
fractionation may be diverse, and a recent study showed 
poor correlation of AF sources to CFAE (20). This is in 
agreement with earlier work (69), showing that rotors did 
not co-localize with regions of fractionation.

Also of interest as potential AF-sustaining sites, GP are 
regions of autonomic innervation to the atria (18). Prior 
work has shown that such areas may serve as high frequency 
AF sources as a result of autonomic remodeling (70).  
Procedurally, they may be localized by high frequency 
stimulation and the appearance of a stimulated vagal 
response, defined as either atrioventricular block, asystole, 
or an increase in the mean RR interval of greater than or 
equal to 50% (71). Notably, a randomized clinical trial 
found that the addition of GP ablation to PVI improved 
procedural success (72). However, the link between GP and 
rotors is presently unclear.

Conclusions

Rotors are regions of functional reentry which drive AF. 
Ionic remodeling, fibrosis, and structural features have been 
shown to facilitate and stabilize rotor formation, which 
precess in the midst of complex fibrillatory dynamics making 
their detection difficult. Confirmation of the existence 
and importance of rotors in human AF has emerged only 

Figure 5 (A) Very Long-Term from atrial fibrillation in the CONFIRM trial for FIRM-guided ablation (blue) and conventional ablation 
(red; P=0.003) after 1.2±0.4 procedures; (B) very Long Term Single-Procedure freedom from the AF for FIRM-guided ablation (blue) and 
conventional ablation (red) in the CONFIRM trial. Data shows all cases (solid lines, P=0.002) and those undergoing their first ablation (dashed 
lines, P=0.002). AF, atrial fibrillation; FIRM, Focal Impulse and Rotor Modulation.
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recently, with the advent of appropriate procedural and 
computational techniques. A rapidly growing body of 
literature shows that rotors are spatially conserved and 
amenable to ablation. Clinically, studies from multiple 
independent laboratories shows that rotor elimination via 
FIRM substantially improves AF freedom compared to 
conventional ablation alone. Future clinical studies should 
confirm these promising results in multicenter randomized 
trials, which are underway. Mechanistically, studies 
should define how rotors anchor in human atria, and the 
mechanisms for fibrillatory conduction.
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