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Similarities in host immunity toward both cancer and 
pathogenic microbes are increasingly noted (1). While there 
are likely to be phenotypic distinctions between host defense 
against cancer and microbes—given the myriad of cancer 
types and thousands of microbes—it makes intuitive sense 
that the same immune cells and mechanisms may participate 
in combatting both. Untreated acquired immune deficiency 
syndrome (AIDS) is a natural example of this paradigm 
wherein depletion of CD4+ T cells increases the risk of both 
cancer (e.g., Kaposi sarcoma, non-Hodgkin and Hodgkin 
lymphoma, and cancer of the oral cavity, lung, liver, cervix, 
and anus) and pathogenic/opportunistic infections. In 
another example, T effector cells play an important role 
against chronic infections such as tuberculosis (TB), and 
also protect against cancer, as evinced by the development 
of checkpoint inhibitors against various malignancies. 

In this issue of the J Thoracic Dis, Cheon and colleagues (2)  
analyzed a large database of ~35,000 cancer patients and 
~70,000 age- and gender-matched controls to determine 
the incidence of TB within the following three years after 
enrollment. They found that those with known cancer 
were much more likely to develop TB (380/34,783) than 
those without (79/69,566), yielding TB incidence rates 
of 535/100,000 person-years for cancer patients and 
37/100,000 for non-cancer patients. Certain cancers were 
particularly noteworthy to be associated with high rates of 
future TB, including esophageal cancer, multiple myeloma, 
lung cancer, pancreatic cancer, leukemia, head and neck 
cancer, and lymphoma. In a TB endemic country like 
Korea, the greater than 10-fold incidence of active TB cases 

in cancer patients are likely due to both reactivation TB and 
primary progressive TB.

What could be some mechanisms by which 
having cancer predisposes to TB (Figure 1)?

An obvious possibility is due to immunosuppression from 
the cancer itself (e.g., infiltration of lymphoid organs and 
bone marrow with cancer) and from the chemotherapeutic 
agents that cause immunosuppression by inducing various 
immune cell cytopenias. But what about the checkpoint 
inhibitors such as the anti-programmed death-1 (PD-1)  
antibody, anti-cytotoxic T-lymphocyte associated protein 
4 (CTLA-4) antibody, and anti-PD ligand-1 (PD-L1) 
antibody? PD-1 and CTLA-4, upon binding to their 
ligands PD-L1 (present on both antigen-presenting cells 
and tumor cells) and B7 (present on antigen-presenting 
cells), serve to dampen (“check”) T effector cell activation. 
Thus, the checkpoint inhibitors (anti-CTLA-4, anti-PD-1, 
and anti-PD-L1) would serve to activate T cells against 
cancer. Indeed, these checkpoint inhibitors have shown 
good efficacy against previously unresponsive cancers such 
as melanoma. Given their mechanism of action, it would 
seem that use of these agents would be less predisposing 
to opportunistic infections and perhaps even protective 
against infections such as TB; however, this is controversial 
as few cases of TB have been reported with the use of 
such agents (3). Furthermore, based on the paradigm that 
checkpoint inhibitors activate the immune system, one 
would expect the PD-1 knockout mice would be more 

Editorial

Are there common threads in the susceptibility to cancer and 
tuberculosis?

Edward D. Chan1,2,3

1Department of Medicine and Academic Affairs, National Jewish Health, Denver, CO, USA; 2Pulmonary Section, Rocky Mountain Regional 

Veterans Affairs Medical Center, Aurora, CO, USA; 3Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz 

Medical Campus, Aurora, CO, USA

Correspondence to: Edward D. Chan, MD. D509, Neustadt Building, National Jewish Health, 1400 Jackson St., Denver, Colorado 80206, USA.  

Email: ChanE@njhealth.org.

Submitted Mar 19, 2020. Accepted for publication Mar 30, 2020.

doi: 10.21037/jtd.2020.03.114

View this article at: http://dx.doi.org/10.21037/jtd.2020.03.114

1780

https://crossmark.crossref.org/dialog/?doi=10.21037/jtd.2020.03.114


1777Journal of Thoracic Disease, Vol 12, No 5 May 2020

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2020;12(5):1776-1780 | http://dx.doi.org/10.21037/jtd.2020.03.114

protected from experimental Mycobacterium tuberculosis 
(MTB) infection, and yet three studies showed they actually 
had worse outcome (4-6). One possible explanation for 
this paradoxical phenomenon is that mice with complete 
disruption of PD-1 have excessive inflammation causing 
detriment to the host but that partial PD-1 inhibition would 
be beneficial to the host in combatting MTB (7-9). Indeed, 
one of the major side effects of the checkpoint inhibitors is 
the development of excessive immune response as evinced 
by the development of various autoimmune diseases such 
as type 1 diabetes mellitus, autoimmune thyroiditis, colitis, 
etc. This checkpoint inhibitor-induced autoimmune disease 
is likely due to both enhanced T effector function but 
also decreased Treg function since PD-1 and CTLA-4, 
while inhibiting T effector cell function or inducing T cell 
exhaustion, are known to activate Tregs.

Another possibility is not due to the cancer per se but to 
a common environmental exposure predisposing to both 
independently. One prime example is cigarette smoke (CS) 
exposure, the major risk factor for lung cancer but also 
cancer of the head and neck, esophagus, stomach, pancreas, 
liver, kidney/bladder, and cervix/ovaries as well as acute 

myeloid leukemia. Perhaps less well appreciated is that CS 
exposure is a risk factor for primary MTB infection, active 
TB, more severe TB, and greater mortality from TB (10). 
These epidemiological associations have been corroborated 
in in vitro experiments with CS-exposed or nicotine-
exposed macrophages and MTB infection (11) as well as in 
vivo murine experiments, wherein mice exposed to CS are 
significantly more susceptible to MTB (12-14). In similar 
context, long-term exposure to outdoor air pollution and 
biomass fuel exposure may be a risk factor for both cancer 
(lung, bladder, childhood leukemia and possibly kidney and 
colon) (15) and TB (10). Peripheral blood mononuclear 
cells incubated with particulate matter with aerodynamic 
diameters ≤2.5 µm (PM2.5) impaired the ability to control 
MTB infection as well as reduced interferon-gamma (IFNγ) 
and tumor necrosis factor-alpha (TNFα) expression and 
increased interleukin-10 (IL-10) production in CD3+ T 
cells (16). However, others have not found an association 
between indoor air pollution—mainly from biomass fuel 
smoke exposure—and self-reported, previous TB (17). 
There are likely to be other environmental exposures that 
could increase the risk of both cancer and TB; e.g., silica 

Figure 1 Mechanisms by which cancer and factors associated with cancer may predispose to tuberculosis (TB). Infiltration of bone marrow 
by cancer cells causing immune cell cytopenias, immunosuppressive drugs, loss of body fat resulting in decreased leptin and enhanced 
downstream immunosuppressive effects, tumor-associated macrophages (TAM), and tumor-associated neutrophils (TAN) may all predispose 
to TB. In addition, certain exposures such as cigarette smoke and silica may predispose to both cancer and TB independently. Given the 
overlap between host defense against cancer and TB, host susceptibility genes to both disorders may also exist in some individuals.
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exposure increases the risk of both lung cancer and TB (18).
Cancer-associated weight loss  is  a  well-known 

phenomenon and this may be another mechanism by which 
cancer predisposes to TB. Weight loss may be due to the 
cancer itself but also from nausea, vomiting, and decreased 
caloric intake often associated with chemotherapy. It has 
long been observed—in the times of Hippocrates—that 
TB is more likely to develop in those with asthenic body 
habitus. Three very large studies—comprised of 67,000, 
800,000, and 1.7 million subjects—showed that body weight 
is inversely related to the incidence of active TB (19).  
One possible clue for this inverse relationship between 
body weight and TB is the juxtaposition of fatty tissues 
and lymph nodes; i.e., lymph nodes are often invested in 
fat. Adipocytes produces leptin, a satiety hormone but also 
functions to help differentiate undifferentiated T cells 
toward the IFNγ-producing TH1 phenotype, a cell type 
that affords protection against TB. Indeed, a study from 
Hong Kong showed that obese individuals are significantly 
less likely to develop active TB (20). We also showed 
that the leptin-deficient mice—phenotypically obese due 
to insatiable appetite but have thymic atrophy, reduced 
splenic weight, and reduced circulating lymphocytes—
are more susceptible to MTB (21). Thus, mere weight loss 
from cancer and/or side effects from treatment may be an 
important risk factor for development of active TB.

Innate immune cel ls  such as  macrophages and 
neutrophils may infiltrate the tumor microenvironment—
the so-called tumor-associated macrophages (TAM) and 
tumor-associated neutrophils (TAN) (22,23). The TAM are 
similar to the “wound-healing” or M2 type of macrophages 
and secrete immunosuppressive cytokines such as IL-10 
and transforming growth factor-beta (TGFβ). Infiltration 
of TAM in tumors promotes tumor growth, invasion, 
and metastases and is also associated with reduced patient 
survival (22). Based on their immunosuppressive phenotype, 
these TAM would be also expected to increase vulnerability 
to TB (24). There are also several neutrophil phenotypes, 
including the N2 TAN that secrete TGFβ and promote 
tumor growth (23) and would also be expected to impair 
host immunity against TB.

Some individuals may have genetic susceptibility to 
both “cancer”—either susceptibility to several types or to a 
specific cancer type—and to TB. It would be interesting to 
perform an extensive literature search on whether there are 
genes that increase one’s vulnerability to both cancer and 
TB. Numerous candidate susceptibility genes to TB have 
been recognized from genome-wide linkage and genome-

wide association studies (25). One problematic area in these 
data-rich studies to search for genetic susceptibility to TB 
is suboptimal reproducibility of the results due, in part, 
to different races and populations studied, with their own 
unique genetic and co-morbid epigenetic factors.

Activation of nuclear factor-kappa B (NF-κB) in cancer 
cells is one mechanism by which cancer cells are resistant 
to undergoing apoptosis; i.e., NF-κB is generally anti-
apoptotic (18). Since we showed that NF-κB activation may 
inhibit autophagic flux in macrophages, impairing control 
of MTB, it is possible that widespread activation of NF-
κB—to also include macrophages—may be a host evasive 
mechanism by both cancer cells and MTB. However, 
it is important to stress that NF-κB is a canonical pro-
inflammatory transcription factor needed for the production 
of host-protective cytokines such as TNFα and IFNγ; thus, 
the extent, timing, and perhaps which isoform of NF-
κB is activated plays an important role in determining its 
deleterious and salubrious effects. While apoptosis has been 
shown to be host protective mechanism against MTB, this 
is in the context of MTB-infected macrophages and thus a 
lack of apoptosis per se would—at least on the surface—not 
be a common mechanism predisposing to cancer and TB.

Many cancer cell types undergo aerobic glycolysis 
metabolism, also known as a Warburg effect and clinically 
observed by increased 18F-deoxyglucose uptake in 
positron emission tomography (PET) scan. Others have 
shown that in both macrophages and mouse lungs that 
undergo aerobic glycolysis are better able to control MTB  
infection (26). Thus, the Warburg effect would protect 
cancer cells but be deleterious against MTB. Thus, the 
presence of the Warburg effect in cancer would not 
predispose the host to TB but may actually be protective 
against TB.
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