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Introduction

Artificial intelligence (AI) enables us to interpret large 
volume of data into a machine learning (ML) or statistical 
model without an explicit need of a hypothesis as in 
traditional research. The era of data science and modern 
inter-disciplinary research have placed an increasing 
burden on analytical methodologies and we have to ensure 
any analysis that we perform is rigorous and correct. To 
design an AI workflow that is scalable and generalizable 
to new patients within and between hospital sites, it is 
critical to be aware of data science best practices and abide 

by the principles along the way (1-3) to ensure accurate 
radiogenomic analysis.

Radiogenomic workflow

In a classical sense, a radiomic or radiogenomic pipeline 
involves image registration and pre-processing, image 
segmentation and annotation, feature extraction, and 
searching for an optimal ML or statistical model to 
correlate with or to predict a variety of genotype and 
clinical outcomes (4-12). If the models are to be deployed, 
the pipeline will be tested prospectively and if possible, 
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also in an external site. As new data come in, the model in 
production will be adjusted and improved.

Standardizing data and generating radiomic 
features

If the imaging data are collected consistently using the 
same scanner and protocol, data quality and image contrast 
should be relatively stable across patients. However, this is 
usually not the case in clinical settings, especially when data 
come from multiple centers or public data repositories. For 
instance, using a phantom and cohort of NSCLC patients, a 
study compared the variability of radiomic features derived 
from CT images from scanners under different vendors (13).  
They showed that the inter-scanner variability of the 
radiomic features can be comparable or even larger than 
inter-patient variability. We need to homogenize the images 
to reduce unwanted variability such that the radiomic 
features calculated from standardized image data have 
sufficient inter-patient variability for model development 
(14,15). Image pre-processing and standardization methods 
typically involve intensity normalization, re-sampling and 
image filtering (16-18).

Computational radiomic features are mostly sub-visual, 
they can be largely categorized into intensity, shape, and 
texture. In addition, we can apply spatial filters such as wavelets 
and Laplacian of Gaussian to extract a variety of derivative 
and spatial-frequency information. Multiple tools are 
available to conveniently extract radiomic features (8,19-22).  
However, features calculated from different radiomic 
software may affect downstream analysis and possibly the 
accuracy of clinical outcome prediction (23-25). Additional 
assessment may be necessary to identify strength and 
weakness of different radiomic tools when developing a 
predictive model.

Feature selection

The number of radiomic features is typically in orders of 
magnitude larger than the number of patients. Fitting all 
features into a system of equations will lead to overfitting 
and almost guarantee non-convergence and even if it 
converges, the model is likely not generalizable to new 
patient population. To avoid overfitting, we need to control 
for the degree of freedom consumed by the abundant 
input features. There have been various strategies for 
feature selection—namely dimensionality reduction using 
unsupervised learning, forward or backward feature selection 

(wrapper methods), filtering methods such as minimum 
redundancy maximum relevance (26), and directly embed 
feature selection in ML models using regularization and 
dropout (27,28). A pitfall of utilizing feature engineering 
is that different strategies will likely provide a different 
set of dominant features. We should not over interpret 
the significance of individual features in association with 
the outcome. Alternatively, we can collectively regard the 
radiomic features set as a radiographic phenotype and relate 
that to the clinical phenotype and genotype.

Model assessment and external validation

A variety of statistical and ML models can be employed 
depending on the outcome variable. Using supervised 
learning, analysis typically falls into either prediction 
of categorical variables (such as survival groups or gene 
groups) using classification, and prediction of real-valued 
variables using regression. 

Different assessment options are available for different 
types of models. In inferential statistics, such as multiple 
linear regression and survival analysis, P values are often 
used to depict the significance of association between an 
input variable and the outcome variable. Associating many 
radiomic features with every other genomic/molecular/
prognostic feature result in multiple statistical analyses. 
It is a good practice to incorporate multiple comparisons 
correction to prevent inflation of false positive rates (29).

A common strategy in radiogenomics to predict 
phenotype or genotype is to cluster the outcome variable 
into two or more groups and then utilize classification 
models to make predictions (30-36). The model prediction 
for classification problems are usually real-valued. 
Threshold is applied to calculate true positive, true 
negative, false positive and false negative values for model 
performance assessment. One of the most commonly used 
metrics to evaluate classification models is area under 
the ROC curve (AUROC). The AUROC illustrates the 
relation of true positive rate and false positive rate when 
different thresholds are applied to the predicted value 
of the classification model. Although AUROC is widely 
accepted, depending on the need, sometimes AUROC 
alone may not be enough as the only metric and the area 
under the precision recall curve (AUPRC) could be a 
useful complement (37), especially when the dataset has 
imbalanced outcome (38). In addition, since the prediction 
from the classification model is continuous, we can utilize 
this score as a proxy for overall survival and then stratify 



5106 Wong and Chaudhry. Radiogenomics of lung cancer

© Journal of Thoracic Disease. All rights reserved.   J Thorac Dis 2020;12(9):5104-5109 | http://dx.doi.org/10.21037/jtd-2019-pitd-10

patients into multiple risk groups with a different number 
of bins than the original classification model.

An alternative to using classification model is to directly 
predict survival as a real-valued outcome using ML. Popular 
routines such as elastic net, support vector machine and 
tree-based models can be adopted to perform survival 
analysis (39,40). Metrics such as Harrell’s concordance 
index, or time-dependent cumulative-dynamic AUC can be 
used for model performance assessment (41,42). 

When we develop ML models, an option is to divide 
a dataset into a training set and a test set. The model is 
developed using the train set and then applied to the test 
set for performance evaluation. To be more rigorous, we 
typically utilize a cross validation approach by dividing the 
dataset into a cross-validation set and a test set. Within the 
cross-validation dataset, we can identify the most related 
set of input features, the best performing ML model with 
the associated hyperparameters. The commonly used 
cross-validation strategies are n-fold and leave-one-out. 
The cross-validated feature set and model are then applied 
on the test set for a final assessment to see how well the 
model may be generalized. It is critical that the test set is 
left completely untouched in the entire feature selection 
and modeling process and is only used for generalizability 
testing of the final model. If the best practices are strictly 
followed, we have more confident that the model is 
applicable in a prospective manner.

Even if the model is generalizable within site, it does 
not imply the model will perform well externally. To allow 
models to be widely adopted, we need to ensure our work 
are reproducible (4,43,44). In addition, the models should 
be validated using external data and site-related variability 
should be assessed and compensated (7,45,46).

Deep learning and autoML

With the advancement of CPU and graphic processing 
unit (GPU) technologies, deep learning and automated 
ML (“autoML”) approaches are becoming more popular 
as computationally intensive algorithms can be parallelized 
and optimized using scalable hardware. Deep learning is 
an attractive alternative to classical radiomics in that the 
original images can be directly fed into the neural network 
configuration with minimal pre-processing (30,47-49). For 
instance, a clinically validated study using deep learning 
on low dose CT images achieved 94.4% AUROC on 
predicting the risk of lung cancer (47). Another multiple 
timepoint study using convolutional and recurrent neural 

networks (CNN and RNN) on CT images acquired on 
NSCLC patients can predict survival and various cancer-
related outcomes including progression, metastases and 
recurrence with acceptable performance (30). On the other 
hand, autoML allows scientists to train a large number of 
ML or deep learning models with little coding (50). The 
caveat is that the autoML models may not perform better 
than models designed and trained by researchers with 
domain and computational science expertise. As autoML 
is like a black-box model and interpretability may not be 
trivial, we have to pay extra attention to make sure the data 
we feed in do not cause discriminatory issues or harm to the 
patients (50).

Lung cancer and radiogenomics

Lung cancer is the most common cause of cancer related 
death worldwide (51). Lung cancer is usually diagnosed on 
medical imaging [radiographs or computed tomography 
(CT)] with imaging findings usually describing presence of 
a space occupying lesion within the lung parenchyma and 
its relationship to surrounding tissues (pleural, ribs, hilum, 
etc.). Detected lesions are usually biopsied to confirm 
diagnosis of cancer as well as for histologic characterization 
of the tumor [small cell lung cancer (SCLC), non-
small cell lung cancer (NSCLC), etc.] (51). Although 
tissue-based diagnosis is the current gold standard, it is 
important to be mindful of its limitations; e.g., sampling 
error, biologic heterogeneity between primary neoplasm 
and metastatic site, etc. (51). Radiogenomics allows for 
structural characterization of the lesions as well as provide 
functional information about the tumor including tumor 
biology (51,52). Additionally, radiogenomic map of the 
lesion can help characterize intralesional heterogeneity (52).  
Radiogenomics can be performed using multimodal 
(X-rays,  CT, PET, MRI) and/or mult iparametric 
(multiple MRI sequences, e.g., diffusion MRI, perfusion 
MRI, etc.) techniques (52). Furthermore, recent studies 
have shown that in addition to increasing diagnostic 
specificity, radiogenomics can aid in treatment selection 
and prognostication (51,52). With emergence of targeted 
therapeutics [e.g., anti-programmed death receptor 1 (anti-
PD1), anti-programmed death ligand 1 (anti-PDL1), etc.], 
radiogenomics powered by ML and AI can potentially help 
identify targeted therapeutics patients can benefit from. 
Recent studies have shown radiomics of NSCLC can help 
in early cancer detection, evaluate treatment efficacy, and 
predict treatment-related outcomes (51-55). Additionally, 
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radiomic approach can be used to evaluate outcomes in 
patients treated with radiotherapy. Zhou et al. (52) recently 
showed efficacy of radiogenomics as noninvasive diagnostic 
and prognostic biomarkers in lung cancer. For example, 
radiogenomics can be used to identify epidermal growth 
factor receptor (EGFR) expression in lung cancer as 
well as other transcriptional factors (52). Zhou et al. also 
demonstrated that lung cancer CT Hounsfield attenuation 
and lesion margins correlated with cell-cycle genes. Zhou  
et al. noted that presence of irregular borders and ground 
glass opacities in the lesion correlated with EGFR 
expression in lung cancer. More recently, Forghani et al.  
showed radiomics and AI platform can be utilized to help 
non-invasively differentiate between adenocarcinoma and 
squamous cell carcinoma of the lung (56). 

Conclusions

Radiogenomic analysis of NSCLC showed multiple 
associations between semantic image features and 
metagenes that represented canonical molecular pathways, 
and it can result in noninvasive identification of molecular 
properties of NSCLC. 
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