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Introduction

Pneumonia is one of the most common indications for 
the antibiotic prescription (19.2%), followed by skin and 
soft tissue infections (SSTIs; 9.0%) and intra-abdominal 
infections (IAIs; 7.0%) (1). Despite advances in clinical 
treatment and antibiotic therapy, pneumonia is still 
associated with high morbidity and mortality worldwide  
(2-4). The burden of hospital admissions for pneumonia 
is high (5-7): twenty-four to 75% of these patients are 
expected to be admitted in internal medicine wards (IMWs) 
(8-12). Community-acquired pneumonia (CAP) is associated 

with significant costs, high rate of hospitalization (3,4) and 
intensive care unit (ICU) admissions (2,5). Mortality rate 
is increased up to 40% by several factors, as older age or 
comorbidities (13). Nosocomial pneumonia (NP) accounts 
for approximately 25% of the total infections harbored in 
the ICU and such circumstances have an enormous effect 
on the length of hospital stay and hospital related cost, 
with a mortality of between 27% to 50% (14). The efficacy 
of the treatment is even more compromised in countries 
where antibiotic persists, and this allows nosocomial 
infections with limited options for adequate antimicrobial 
treatment (15). “Old” cephalosporins (e.g., ceftriaxone, 
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cefepime, ceftazidime) are commonly used agents in the 
treatment of different bacterial infections, including lower 
respiratory tract infections (LRTIs), thanks to their broad-
spectrum activity, well-characterized pharmacological 
properties and low rate of adverse events (16). The 
overcoming prevalence of extended-spectrum β-lactamases 
(ESBLs), carbapenemases producing Enterobacteriaceae 
(CPE), chromosomal AmpC β-lactamases makes these 
drugs ineffective to treat these infections. Furthermore, 
the emergence of multi-drug resistant (MDR) Gram-
positive bacteria such as methicillin-resistant Staphylococcus 
aureus (MRSA), methicillin-resistant coagulase-negative 
Staphylococci (MR-CoNS), penicillin- and ceftriaxone-
resistant S. pneumoniae (PRP and CRP respectively) and 
resistant Enterococci makes the management and treatment 
of these isolates challenging (17,18). Pushed by the need of 
new antimicrobial agents, cephalosporins had been through 
significant changes with the introduction of new generation 
agents such as ceftobiprole (19,20) and ceftaroline (21,22), 
ceftolozane/tazobactam (C/T) (23) or ceftazidime/
avibactam (C/A) (24). Several studies have highlighted the 
non-inferiority of the new cephalosporins regarding their 
comparators (19-23,25,26). Fundamental strengths of these 
contemporary cephalosporins include an attractive spectrum 
of activity against MDR bacteria combined with high 
pulmonary penetration, proven harmlessness, and in some 
case, avoid combined therapy (15). We aimed to review the 
role and place in therapy of new cephalosporins in CAP 
and hospital-acquired pneumonia (HAP) in the setting of 
IMWs. 

Epidemiology of pneumonia in internal medicine

The burden of Gram-positive in pneumonia is central (27),  
and Streptococcus pneumoniae is the most common bacteria 
causing CAP. Furthermore, approximately 16% of 
nosocomial types of pneumonia are a consequence of  
S. aureus infection (24). There is a close connection between 
influenza A virus disease and the subsequent or concurrent  
S. aureus infection: influenza A virus may increase the 
adhesion of S. aureus to respiratory tract cells boosts its 
proteases and simultaneously enhancing viral replication (28).  
For the above reasons, nasal carriers of S. aureus, which 
include from 20% to 83.7% of the general population, 
are at high-risk for secondary staphylococcal-pneumonia 
following influenza A (28).

Pneumonia due to Gram-negative bacteria (GNB), 
notably Enterobacteriaceae and Pseudomonas aeruginosa (PA), 

constitutes approximately 2% of cases of CAP, despite the 
increment in special populations such as older adults and 
high comorbid subjects (29,30). Furthermore, resistant 
strains are rising; notably, PA and MRSA that were reported 
in about 6% of CAP (31,32). As a matter of fact, according 
to current suggested treatments for CAP, MRSA and PA are 
two of the major disease-causing that would not be covered 
adequately with the existing strategies (29-32). Regarding 
HAP Enterobacteriaceae (e.g., Klebsiella spp., Enterobacter spp., 
and Serratia spp.), PA, and Acinetobacter baumannii, need to 
be considered (33-35). ESBL-producing Enterobacteriaceae 
and CPE related pneumonia remain a rare event in IMWs, 
especially in patients without prior known colonization 
(36-38). To systematically treat pneumonia, should be 
individualized the therapy considering local antimicrobial 
resistance and epidemiology, the stage of the illness and 
potential host factors predisposing to a high risk for specific 
pathogens (33-35).

Overview on new cephalosporins in the 
treatment of pneumonia in IMWs

Ceftolozane-tazobactam

This new cephalosporin combines in itself an innovative 
anti-pseudomonal cephalosporin, ceftolozane, albeit 
with pronounced similarity to ceftazidime structure, and 
the renowned β-lactamase inhibitor tazobactam (26). 
C/T, already approved for complicated urinary tract 
infections(cUTI) (38) and complicated intra-abdominal 
infection (cIAI) (39) at a dose of 1.5 g (i.e., with the ratio of 
1:0.5, respectively ceftolozane and tazobactam, every 8 h) 
has recently been approved, to twice the previous reported 
daily dose, in the phase III study ASPECT-NP (23), for 
treatment of NP, by the U.S. Food and Drug Administration 
(FDA) (40) and European Medicines Agency (EMA) (41). 

Antimicrobial properties of C/T
C/T is active in vitro against many important GNB, 
including multidrug- (MDR) or extensively drug- (XDR) 
resistant Pseudomonas spp. and ESBLs Enterobacteriaceae 
(42,43). As evidence of it, Farrell et al. have reported that 
C/T is the most active agent against PA (44) confirmed in 
several studies against strains grown in biofilms (45,46). 

Ceftolozane showed an elevated activity toward the 
essential penicillin binding proteins (PBPs; e.g., PBP1b, 
PBP1c, PBP2 and PBP3) of PA (47-50) and more stability 
against the chromosomal AmpC β-lactamase of PA and less 
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reliance from its efflux pumps (e.g., Mex) or entry porins 
(e.g., OprD) (51,52) compared to ceftazidime. 

Data from the surveillance network by Zilberberg et al. 
have shown that 22% of PA isolates from pneumonia are 
MDR (53) similar to those reported by Sader et al. (54) from 
the INFORM study. Moreover, INFORM study showed a 
rates of XDR PA among low respiratory isolates from 9.0% 
to 11.2% (54). In a multicenter evaluation C/T has retained 
its sensitivity (55) against the 36% of meropenem non-
susceptible PA strains examined. Furthermore, according to 
Humphries et al. among isolates resistant to all traditional 
antipseudomonal beta-lactams, 52.4% were susceptible 
to C/T and whereas 36.4% of C/A-resistant isolates were 
susceptible to C/T (56). Pogue and colleagues (57) have 
recently compared C/T to polymyxin or aminoglycosides-
based regimens supporting the preferential use of C/T to 
treat NP due to the more favourable clinical cure, renal 
profile and comparable mortality rate (57-61).

Clinical trials for C/T in pneumonia
In the ASPECT-NP trial (23), a randomized, controlled, 
double-blind, phase III non-inferiority trial, C/T (2 g 
ceftolozane and 1 g tazobactam every 8 h) was compared 
to meropenem (1 g every 8 h) to assess efficacy and safety 
in treating GNB-related NP with antimicrobial regimens 
lasting eight to 14 days. Clinicians from 263 hospitals in 
34 countries have enrolled 726 patients, over 18 years old, 
subject to mechanical ventilation (MV) and randomized 
(1:1) to the C/T or meropenem group: the main focus of 
treatment was ventilator-associated pneumonia (VAP) which 
counted the 71% (N=519) of infections and 207 subjects 
(29%) had a diagnosis of HAP or ventilated-HAP (23).  
The first goal was to evaluate all-cause mortality at day 28 
in the intention to treat population (ITT): C/T was non-
inferior to meropenem in terms of both 28-day all-cause 
mortality [N=87 (24%) and N=82 (25.3%) respectively; 
weighted treatment difference 1.1% (95% CI: –5.1% to 
7.4%)]. These findings were confirmed in clinical cure at 
test-of-cure (TOC) [N=197 (54%) and N=194 (53%) in 
the C/T and meropenem groups, respectively; weighted 
treatment difference 1.1% (95% CI: –6.2% to 8.3%)] (23).  
Thus, outcomes have supported the role of C/T as an 
alternative to carbapenems-based regimens. There was 
a trend toward higher rates of adverse events in the  
C/T compared to meropenem group (42% vs. 36%) but the 
study did not have enough statistical power to detect clearly 
this difference (23). Further phase IV studies aimed at assess 
the risk-benefit profile of C/T with careful observation and 

surveillance in the clinical practice are needed (62).  

Lung penetration of C/T
Lung penetration of C/T has been evaluated in two phases 
I trials. A standard dose of C/T (e.g., 1.5 g every 8 h) has 
proved to be successful in reaching pharmacokinetic (PK)/
pharmacodynamic (PD) target in epithelial lining fluid 
(ELF) in healthy individuals, for pathogens with minimum 
inhibitory concentration (MIC) within current susceptibility 
breakpoint of up to four milligrams per litre (63,64). In 
the ASPECT-NP trial (23), the 3 g dose was tailored for 
achieving maximum antibacterial activity in the lungs, even 
against GNB showing a MIC higher than of 8 µg/L (62,65). 
In healthy individuals, pulmonary the dose of 3 g every 8 h 
can reach ELF concentrations of >8 mg/L for 40% of the 
treating period and 4 mg/L for 50% of the treating period 
in the nearly overall of patients (62,65). Ceftolozane seemed 
to practically clear (92%) as an unaffected component by 
the renal route (40-42). Despite the reduction of dosages 
in patients with impaired renal function, C/T schedule for 
pneumonia remains loyal to time-driven PK, maintaining 
time between doses unchanged (q8 hours) (23,62). 

Place in therapy of C/T within IMW
Different researches have studied risk factor for rectal 
colonization by ESBL such as advanced age, multiple 
medical conditions (e.g., recurrent UTIs, obstructive 
UTIs, diabetes mellitus, Charlson index score >3), prior 
past hospitalizations, recent antibiotic therapy (particularly 
third-generation cephalosporins and fluoroquinolones) 
and trips to highly endemic countries (e.g., Eastern 
Mediterranean countries, South-East Asia) (66-68). The 
overuse of carbapenems due to their efficacy against ESBL 
isolates resulted has helped to increased drug resistance. 
C/T has been proposed as part of carbapenem-sparing 
strategies (Table 1) (70). Moreover, it is known that PA is 
a not uncommon cause of severe pneumonia, especially 
in patients with chronic obstructive pulmonary diseases 
(COPD), bronchiectasis or former smokers, with a high 
mortality rate (29-32,71). C/T may be an actual and future 
option as “backbone” of the anti-pseudomonal regimens, 
flanked by a second agent, such as aminoglycoside, 
fosfomycin, colistin or according to the local epidemiology, 
a fluoroquinolone (70,72). 

Ceftobiprole

Ceftobiprole medocaril, a fifth-generation, extended-



3750 Lupia et al. New cephalosporins and pneumonia

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2020;12(7):3747-3763 | http://dx.doi.org/10.21037/jtd-20-417

spectrum cephalosporin, was currently endorsed in key 
European countries for the management of adult CAP (19),  
non-ventilator associated HAP (20) and for SSTIs, 
including diabetic foot (73). 

Antimicrobial properties of ceftobiprole 
Cell wall synthesis can be inhibited by ceftobiprole, due 
to its tight bindings to some PBPs of Gram-positive 
and Gram-negative pathogens (74).  Furthermore, 
ceftobiprole can also interfere with β-lactams-resistant or 
poorly susceptible PBPs, including PBP2A of MRSA and  
MR-CoNS or PBP2x typical in PRP and CRP strains (74-76).

Concerning β-lactamases, ceftobiprole was recalcitrant 
to lytic activity by the PC1 staphylococcal penicillinase, to 
the class A (TEM-1 β-lactamase, SHV and K1 β-lactamase 
of Klebsiella oxytoca), and the chromosomal AmpC-type 
β-lactamases of Enterobacteriales and PA, but labile to 
hydrolysis by class B, class D enzymes and by class A ESBLs 
(77,78). 

Ceftobiprole displays high efficacy against several Gram-
positive pathogens including methicillin-susceptible S. 
aureus (MSSA) and MRSA also for strains with a reduced 
susceptibility to linezolid, daptomycin or vancomycin and 
against Gram-negative pathogens, including PA and not-
ESBL-producing Enterobacteriaceae (74,79,80). 

Results from a 5-year antibiotic surveillance program 
in Europe on ceftobiprole (SENTRY, 2005–2010), have 
demonstrated high effectiveness against some of the 
leading cause of CAP, with 99.3% (N=4,443) S. pneumoniae 
isolates testing susceptible and promising results in both 
Haemophilus influenzae and Moraxella catarrhalis (81).

In the surveillance study TRUST, ceftobiprole was 
defined as one of the most effective cephalosporins 
investigated and systematically accredited in clinical review 
literature against S. pneumoniae with MIC50 and MIC90 
two-fold lower than ceftriaxone (82). 

Nevertheless, it is a potent bactericidal agent against 
MRSA that sets ceftobiprole at a distance from other 
cephalosporins (83-88).  In the t ime-kil l  analysis , 
ceftobiprole was bactericidal against community-induced as 
well as nosocomial MRSA strains (83-88). 

In the SENTRY study (81), 26.9% of S. aureus clinical 
isolates were MRSA, and 98.3% of these strains were 
susceptible to ceftobiprole, also in strains resistant in vitro 
to linezolid, vancomycin, and daptomycin: efficacy on 
linezolid-resistant MRSA was also confirmed by the CLASS 
study, assessing the in vitro action of ceftobiprole, issued by 

Table 1 Possible place in therapy of new cephalosporins within 
guidelines for the management of pneumonia 

Gram-positive antibiotics with MRSA activity

Glycopeptides

Vancomycin

Oxazolidinones

Linezolid

New cephalosporins

Ceftobiprole

Ceftaroline

Gram-negative antibiotics with antipseudomonal activity: 
β-lactam-based agents

Antipseudomonal penicillins

Piperacillin/tazobactam

Cephalosporins

Cefepime

Ceftazidime

New cephalosporins

Ceftolozane/tazobactam

Ceftazidime/avibactam

Carbapenems

Meropenem

Imipenem

Monobactams

Aztreonam

Gram-negative antibiotics with antipseudomonal activity:  
non-β-lactam-based agents

Fluroquinolones

Ciprofloxacin

Levofloxacin

Aminoglycosides

Amikacin

Gentamicin

Tobramycin

Polymyxins

Colistin

Polymyxin B

Adapted from Kalil et al. (69). MRSA, methicillin-resistant 
Staphylococcus aureus.
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Rossolini et al. across 19 countries (86).
Furthermore, ceftobiprole, disclosed action against PA 

(64.6% disposed of by the EUCAST-specific susceptibility 
breakpoint of 4 μg/mL) that was less than cefepime (78.6% 
susceptible) and ceftazidime (75.4% susceptible) (81,89-91).

Clinical trials for ceftobiprole in pneumonia
Two phase III trials demonstrated the efficacy and safety of 
ceftobiprole (19-20). The first one was a non-inferiority, 
double-blinded, multicentre, randomised study in 638 
patients hospitalised for the treatment of severe CAP (19).  
The  au thors ,  compared  ce f tob ipro le  medocar i l  
(500 mg/8 h) with ceftriaxone (2 g/day) with optional 
linezolid (600 mg/12 h) when MRSA or ceftriaxone-resistant  
S. pneumoniae was thought to be involved (19).

Ceftobiprole was found not inferior to ceftriaxone, 
whether as monotherapy or combined with linezolid (19).

Awad and colleagues (20) in a double-blinded, 
multicentre randomized study comparing ceftobiprole 
medocaril to ceftazidime and linezolid in 781 patients 
treated for HAP and VAP showing non-inferiority against 
comparators, with the exception of patients with VAP (20).

Possible explanations for these results are the insufficient 
sample size, a substantial conglomeration of baseline 
clinical features and appreciable heterogeneity in the VAP 
subgroup. Besides, another critical statistical difference was 
perceived in the subgroup of subjects with microbiological 
evidence of MRSA infection (94.7% in the ceftobiprole 
group vs. 52.6% in the ceftazidime plus linezolid group 
[difference, 42.1 (95% CI: 17.5–66.7)]. For the secondary 
effectiveness criteria, the microbiological eradication rates 
at the end of management visit in patients with HAP were 
comparable in the ceftobiprole and ceftazidime/linezolid 
groups (20). Interestingly, in patients with HAP requiring 
MV for less than 48 h, clinical outcomes were in favour of 
ceftobiprole (20,92,93). 

Lung penetration of ceftobiprole 
ELF concentrations of ceftobiprole were assessed in fit 
subjects at steady-state: mean ceftobiprole concentrations 
in the ELF were lower than in the plasma (94,95). 
Population PK demonstrating grounded on these data 
showed that average dissemination into the ELF was 25.5% 
(interquartile range, 7.9–30.4%) (95-97). In the murine 
model of pneumonia (95), lung penetration of ceftobiprole, 
based on AUC values in the ELF and plasma, was more 
elevated (median 68.8%) than in healthy individuals. 
However, the calculated ELF levels of antibiotics may 

barely predict β-lactam concentrations at the site of 
infection (96), specifically in studies in healthy volunteers. A 
review of clinical studies examining the ELF concentrations 
of ceftobiprole with those of other cephalosporins displays 
that lung penetration with the bulk agents was similar to 
that observed with ceftobiprole (94,97).

Place in therapy of ceftobiprole within IMW
Ceftobiprole may be a good option in severe CAP leading 
to complications associated with influenza, in which 
practical coverage of community-associated MRSA (CA-
MRSA) should be guaranteed (Figure 1) (92) especially in 
patients with diabetes, obese, COPD or patients with lung 
abnormalities, patients older than 65 years or patients with 
underlying malignancies (92,93,98). Scheeren et al. (98), in 
a post-hoc analysis from the two phase III trials (19-20), 
evaluated the consequences in a smaller group of high risk 
subjects with community induced or NP and they showed 
advantages of ceftobiprole compared to other medications 
in terms of premature progress in the recovery for high-
risk patients, and in high-risk HAP and patients with up to 
ten underlying comorbidities at baseline (98). Thanks to 
its safety and efficacy also in frail population, ceftobiprole 
should be considered in severe pneumonia and in patients 
at high risk of mortality (92-94,98,99). Ceftobiprole might 
be useful also in post-obstructive pneumonia, a clinical 
entity due to an infection of the lung parenchyma distal to 
the bronchial obstruction in lung cancer patients, notably 
to endobronchial or extraluminal obstruction due to cancer 
growth (100). Post-obstructive pneumonia presented a 
polymicrobial flora predominantly with the high rate of 
gram-positive pathogens, including MRSA: ceftobiprole 
monotherapy due to its safety may guarantee a low risk of 
an adverse event in this frail population (100). 

Guidelines for NP (69,101) demand rapid empiric 
antimicrobial regimens using a combination of antibiotics 
grounded in local patterns and patient risk factors. 
Furthermore, initial empirical monotherapy might be used 
whenever possible to decrease the risk of MDR growth 
(70,102). Ceftobiprole combines an excellent spectrum 
for pathogens involved in HAP, with low risk and low rate 
of MDR GNB, in frail patients admitted to the hospital 
at high risk of adverse events caused by non-β-lactam 
anti-MRSA-agents as well as MRSA infection. Alongside 
qualities above mentioned, ceftobiprole reports a minimal 
risk in the selection of resistant mutants in Gram-positive 
or GNB and no significant impact on the healthy human 
intestinal flora (92-94). 
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C/A

C/A is an intravenously third-generation cephalosporin (i.e., 
ceftazidime) with the non-β-lactam β-lactamase inhibitor 
avibactam (103). C/A was previously validated for cIAI (104)  
and cUTI (105) therapy and has demonstrated activity 
against common GNB even with the expression of clinically 
relevant class A, C and some D Ambler’s β-lactamases or 
Enterobacteriaceae-producing chromosomal AmpC, ESBLs, 
and OXA-48 enzymes (103).

Antimicrobial properties of C/A
Ceftazidime is primarily an inhibitor of PBP3: adhering to 
PBPs, thereby causing the defects in cell wall formation with 
a binding affinity that vary between cephalosporins (106).  
On the other hand, avibactam inactivates susceptible 
β-lactamases by serine-residue covalent acylation: 
avibactam, through in vitro studies, has shown an attractive 
activity vs. Ambler class A [e.g., ESBL and Klebsiella 
pneumoniae carbapenemase (KPC)], class C (e.g., AmpC), 
and some class D (e.g., OXA-48) enzymes (107,108).

This new combined-cephalosporin offers an exceptional 
action to ESBL- and AmpC-producing Enterobacteriaceae 
comprising strains that allow the of both enzymes (109-112). 
This activity was confirmed in samples collected in studies 
from U.S. (113,114) and European (115) countries. One of 
the largest database, the INFORM (International Network 
For Optimal Resistance Monitoring) global surveillance 
study (116), has counted 34,062 isolates of Enterobacteriaceae 
from multiple sites and infections (e.g., IAI, UTI, SSTI, 
LRTI and bloodstream infections) in 176 medical centre 
laboratories from 39 countries): 99.5% of Enterobacteriaceae 
isolates were susceptible to C/A with a MIC ≤8 μg/mL 
(defined resistant to MIC ≥16 μg/mL) (115). Lately, it was 
designated as inhibitory mechanism rooted on a mutation 
of an AmpC alternate by removal of single amino acid and 
a lower affinity to C/A in some Enterobacteriaceae cloacae 
extended-spectrum AmpC (ESAC) β-lactamase enzymes 
(116-118): despite that resistance due to AmpC variant has 
remained anecdotal.

C/A has shown in vitro susceptibility rate up to 98% 
against KPC-producing K. pneumoniae isolates from most 

Figure 1 Place in therapy of ceftobiprole and ceftaroline in community-acquired pneumonia. CAP, community-acquired pneumonia; 
MRSA, methicillin-resistant Staphylococcus aureus; PA, Pseudomonas aeruginosa; COPD, chronic obstructive pulmonary disease; CF, cystic 
fibrosis.

Severe CAP with high 

risk for MRSA and/or PA

Mild CAP with low risk 

for MRSA and/or PA

Flu Season

Severe CAP with High Risk for 

MRSA and/or PA

1. Ceftobiprole plus azithromicin* (or levofloxacin*)

No risk for PA infections

1. Ceftaroline plus azithromicin* (or levofloxacin*)

1. Ceftriaxone plus azithromicin* (or 

levofloxacin*)

2. Amoxicillin/clavulanate plus 

azithromicin* (or levofloxacin*)

1. Neuraminidase inhibitors plus Ceftobiprole 

(or Ceftaroline)

• Age over 75 years old
• Previous nasal colonization by methicillin-resistant or susceptible S. aureus
• Previous colonization by P. aeruginosa strains
• Recent antibiotic (>10 days fluoroquinolone or cephalosporin III gen)
• Structural lung diseases (e.g., COPD, bronchiectasis, CF)
• Underlying comorbidities (e.g., neutropenia, Severe immunosuppression, solid tumour, asplenia)
• No previous immunization for S. pneumoniae and/or influenza virus

* Stop azithromicin or levofloxacin if Legionella pneumophila antigens were negative

Screen with major risk factors for MRSA and PA

Low risk for MRSA and/or PA High risk for MRSA and/or PA

* Stop azithromicin or levofloxacin if Legionella pneumophila 
antigens were negative
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U.S. and European hospitals (119-123). Although only 
a few studies have differentiated activity of C/A against 
KPC subtypes, emerging data indicate that KPC-3-
producing strains have higher MICs than KPC-2 producers 
(124,125). C/A-resistant strains among KPC-producing 
Enterobacteriaceae may appear due to mutations that increase 
ceftazidimase specificity rather than conferring avibactam 
resistance; nevertheless, its current medical significance 
remains undefined (119-123). 

While in the year 2015,  the f irst  report  on of  
C/A resistance in a KPC-3-generating K. pneumoniae was 
reported (123), and additional cases have been defined 
ever since (124,125). Therefore, despite being a favourable 
remedy, C/A use should be cautious (126). For GNB, it has 
activity against strains generating class D carbapenemases 
as OXA-24 and OXA-48 (127), as well as OXA-40 and 
OXA-69 (128). Among PA strains, an examination of 
3,902 aggregates from 75 U.S. clinical centres recognised 
that 96.9% of the strains were receptive to C/A (MIC  
≤8 μg/mL) (129). In the same survey, susceptibility to  
C/A for MDR and XDR Pseudomonas strains was 81.0% 
and 73.7%, respectively. In 2017, the same authors assessed 
7,686 isolates from the same hospitals, confirming previous 
results (114). C/A has been compared with C/T against PA 
with similar susceptibility percentages, but lower MIC for 
C/T (55,114,130,131).

Clinical trials for C/A in pneumonia
C/A has previously proven its clinical efficacy for the 
treatment of severe GNB infections in phase III trials of 
cIAI and cUTI, receiving approval in both in the U.S. as 
well as in the European countries (104,105). Recently in 
a phase III, randomized, double-blind, double-dummy 
trial, the REPROVE study, investigators have proved the 
non-inferiority of C/A vs. meropenem in hospitalized 
adults with HAP/VAP due to GNB, including ceftazidime 
non-susceptible strains (C/A-NS) (25). Eligible patients, 
recruited for 24 countries, included hospitalized adults 
(aged 18–90 years) randomized 1:1 to receive either  
C/A 2.5 g (2.0 g ceftazidime plus 0.5 g avibactam, q8h 
IV over 2 h) plus meropenem placebo or meropenem 
1 g (q8h IV over 30 minutes) plus C/A placebo for 7 to 
14 days (25). Additionally, from randomization, open-
label aminoglycosides, and linezolid or vancomycin were 
permitted while awaiting culture results for 24 to 72 h 
(25,132-134). The primary endpoint in this study was 
clinical cure at the TOC visit with additional secondary 
endpoints, including all-cause 28-day mortality (25). In 

the ITT group, 69% of subjects in the C/A group were 
clinically treated at the TOC stay when compared to 73% 
in the meropenem group. At the same instance, 77% in 
the C/A group and 78% in the meropenem group attained 
medical therapy in the sample population (25). All-cause 
fatality rates seemed to be 8% and 7% in the C/A and 
meropenem groups, respectively (25). This registration 
study has also placed some dubiousness about safety in the 
C/A group compared to meropenem, with reported higher 
rates of serious adverse reactions (19% vs. 13%) and adverse 
events leading to study drug discontinuation (4% vs. 2.7%) 
(132-134).

Lung penetration of C/A
From both, PK and PD modelling studies have resulted 
that C/A at the standard dose (2.5 g every 8 h) infused over  
2 h, reached ELF’s favourable concentrations (135). Analysis 
using a population PK model found that the proportion 
of the medicating interval that the free-drug absorption 
of C/A rests above the MIC (%fT>MIC) that is essential 
in leading to a favourable result in subjects with HAP was 
>45% (135,136). Preclinical results in rats indicated that 
permeation of the medication in the lung is about 30% of 
the plasma absorption and PK/PD studies in individuals 
established the validity of preclinical data in animals  
(135-139). In terms of PK, the lung’ penetration of C/A is 
just about 25–35% of the absorption in the plasma and was 
assessed in two phases I studies (135,136). ELF penetration 
of C/A is minor when compared to piperacillin (40–50%) or 
meropenem (50%) (136).

Place in therapy of C/A within IMW
Data from the REPROVE study (25,132) have defined  
C/A as a valid alternative to carbapenems in carbapenem-
resistant Enterobacteriaceae (CRE) nosocomial respiratory 
infections. Despite that, should be considered that 
patients in the clinical practice who are receiving C/
A, might be frail, with several comorbidities (133,134). 
De novo resistance and development of resistance 
during C/A therapy, are reported in literature (123-126).  
These reports increase the likelihood of a relatively 
low barrier to resistance for C/A and have important 
implications for antibiotic stewardship programs (123-126). 
Shields et al. (140) evaluated risk factors associated with  
C/A failures and the development of resistance in a cohort of 
adults (n=77). Most failures have occurred in the pneumonia 
group (64%), compared to patients with urinary tract 
infections and blood-stream infections who experienced 
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higher success rates (88% and 75%, respectively). Alongside 
pneumonia, renal replacement therapy was defined as 
independent predictors of clinical failures (140). Assuming 
the potential advantage of this new cephalosporin to treat 
CPE infections, discretion should be implemented to bound 
the extensive use of C/A for culture-negative infections or 
when more narrow-spectrum antibiotics are still active (141). 
C/A with its broad activity against ESBLs and chromosomal 
Amp-producing Enterobacteriaceae may be a practical choice 
to spare carbapenems in these fields (Table 1). Despite 
the placing on the market of C/T, C/A should not be 
forgotten in the management of PA pneumonia (142,143). 
Furthermore, clinical studies with C/A in MDR/XDR PA 
infections are scarce and contain low numbers of patients: 
the cure rates were close to 80%, and most failures occurred 
in respiratory tract infections (144,145). 

Ceftaroline

Ceftarol ine  i s  a  novel  generat ion cephalosporin 
distinguished by a particular spectrum of activity on 
common bacterial causes of CAP (21,22). In the US, 
because of failure of the approval of ceftobiprole for CAP, 
is at the moment the only anti-MRSA cephalosporins 
available for LRTIs (146).

Antimicrobial properties of ceftaroline
Ceftaroline spreads its antimicrobial activity by specifically 
binding of PBPs, notably to the PBP2a, an MRSA-specific 
protein that has low affinity for most other β-lactam 
antibacterials (147). 

Among Staphylococcus spp .  strains, by comparing 
ceftaroline and ceftriaxone, the first has resulted more 
potent in both instances, against MSSA (≥16-fold) and 
MRSA (≥32-fold) (148).

Moreover, susceptibility rates for ceftaroline against 
MRSA isolates were reported broadly high (between 68.2% 
to 93.6%) but changeable between states and regions, with a 
more favourable profile in European than in Asian or South 
American countries (149-154).

Ceftaroline also retains an attractive spectrum of activity 
on other Gram-positive bacteria, notably vancomycin-
intermediate Staphylococcus aureus (VISA), heterogeneous 
VISA (hVISA), vancomycin-resistant Staphylococcus aureus 
(VRSA) or daptomycin non-susceptible S. aureus, linezolid-
resistant S. aureus, MR-CoNS and Streptococci, including 
MDR S. pneumoniae (149-152). 

Among S. pneumoniae strains, ceftaroline was comparable 

to ceftriaxone in the treatment of penicillin-susceptible 
strains but more effective in a subject infected by MDR  
S. pneumoniae strains (150-153). Ceftaroline susceptibility in 
the AWARE program among penicillin-resistant Streptococcus 
pneumoniae ranged from 77.4% to 100% (154) 

Ceftaroline also exhibits potent in vitro activity against 
GNB, including Haemophilus spp., Moraxella catarrhalis, 
Morganella morganii and not-ESBL or AmpC-producing 
Enterobacteriaceae (150-153). 

Clinical trials for ceftaroline in pneumonia
Ceftaroline was approved for the treatment of CAP 
according to FOCUS 1 & 2 studies, two phases III 
randomized controlled trials (RCTs) (21,22). Both studies 
were conducted in an adult population with radiologically 
confirmed moderate-to-severe CAP comparing ceftaroline 
(600 mg q12h) vs.  ceftriaxone (1 g q24h), with an 
additionally empiric macrolide (on day 1) within-subjects 
enrolled in FOCUS 1, for atypical pathogen coverage. 
Subsequently, in Asian subjects was performed, a phase 
III, non-inferiority with nested superiority trial, using 
ceftriaxone 2 g q24h as a comparator (155). Of note, in all 
these studies patients with a definite diagnosis of MRSA or 
high-risk subjects for MRSA infection were excluded, owing 
to the inactivity of ceftriaxone against these strains (155).

In both FOCUS 1 & 2 (21,22), ceftaroline showed a 
proper safety and efficacy, achieving non-inferiority to the 
comparator in the co-primary modified ITT efficacy and 
clinically evaluable populations for the primary endpoint of 
clinical cure at the TOC visit. In the unified examination 
of FOCUS 1 and FOCUS 2, clinical cure rates for 
patients with MSSA CAP at the TOC appointment in the 
microbiological reformed ITT efficiency inhabitants were 
72% (18 of 25) with ceftaroline fosamil, related with 60% 
(18 of 30) for ceftriaxone (21,22,155). With ceftaroline, the 
clinical cure was achieved in up to 80% of cases and was 
still associated with a shorter time to clinical response than 
ceftriaxone.

The combined examination of FOCUS 1 and FOCUS 
2 providing a well-being data set of 1,228 patients, with 
ceftaroline fosamil representing an encouraging well-being 
and tolerability profile, as predictable for a cephalosporin, 
with similar rates of adverse events for ceftaroline fosamil 
(47.0%) and ceftriaxone (45.7%) (21,22,155). 

Lung penetration of ceftaroline
ELF penetration of ceftaroline was assessed in a phase 
I study among fifty-three healthy subjects at different 
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dosing (600 mg, bid and 600 mg, tid) for which free 
lung ceftaroline was approximatively 23% (22.5% and 
23.6%, respectively in the groups) and analogous to other 
β-lactams (156). In a staphylococcal murine pneumonia 
model, Riccobene et al. have demonstrated that absorption 
of ceftaroline in ELF in a human model was comparable 
to serum absorption, causing in similar fT>MIC values in 
serum and ELF: the dissemination of free ceftaroline into 
ELF, was 23% (156). Furthermore, they have reported that 
ceftaroline promptly infiltrating into ELF with maximum 
concentrations occurring at the end of infusion (156). 

Employing plasma and ELF exposure data, stimulated 
that were evaluated to achieve fT>MIC goals of 42.0% for 
plasma and 17.0% for ELF (156-158) in a staphylococcal 
murine-pneumonia model. For ceftaroline 600 mg q12h, 
98.1% of counterfeit patients acquired a 42.0% fT >1 mg/L 
in plasma, and 81.7% also attained a 17.0% fT >1 mg/L in 
ELF (156,157). For ceftaroline fosamil 600 mg q8h, 100% 
and 94.7% of simulated patients achieved the respective 
plasma and ELF targets (156-158). 

Place in therapy of ceftaroline within IMWs
Ceftaroline unites in itself a high bactericidal activity against a 
wide spectrum of pathogens involved in pneumonia (149-151)  
with a favourable posology: 5 to 7 days of twice-a-day 
administration schedule is recommended in patients with 
CAP (21,22,152). Ecological impact of ceftaroline on gut 
and microbiota is less known, theoretically minimal due 
to low faecal excretion. Differences in metabolism and 
excretion, have identified ceftaroline as a good alternative 
in patients who complain a biliary tract disease with at risk 
for pseudo-cholelithiasis. Ceftaroline is a desirable option 
in a patient admitted for CAP, with high risk for MRSA or 
previously known colonization and haematologic features of 
chronic anaemia or low platelets, in which treatment with a 
valid molecule such linezolid may increase the risk of bone 
marrow hyporegeneration (Figure 1) (15,28). Furthermore, 
ceftaroline is a favourable option in Staphylococcal-
pneumonia, according to its higher ELF penetration 
than glycopeptides and low risk of nephrotoxicity. 
Staphylococcus-related pneumonia might be secondary to 
a previous or current bacteremia, as reported for central 
venous catheter (CVC) related bloodstream infections 
or infectious endocarditis: involvement of the lungs, as 
multifocal pneumonia spreading from septic embolism, 
could be in the presence of specific interest of this extended-
spectrum cephalosporin (15,28,159,160).

Ceftaroline as for ceftobiprole may be first-line agents, 
flanked by neuraminidase inhibitors, in severe CAP 
complicating influenza for their known anti-MRSA activity 
(Figure 1) (15,28,159-162). 

Conclusions 

The arrival of new cephalosporins has helped to reach some 
niche populations, otherwise difficult to access (e.g., post-
flu pneumonia, PA pneumonia, CRE pneumonia) and to 
give valid alternatives to the previously known antibiotics 
in this field. Ceftobiprole and ceftaroline provide valuable 
benefits against MRSA and MDR S. pneumoniae avoiding 
combination, flanked by a stimulating spectrum on GNB 
(including PA for ceftobiprole). Furthermore, ceftobiprole 
and ceftaroline may guarantee a low rate of adverse events 
and very restricted drug-to-drug interactions during 
treatment of LRTIs, also in frail patients. C/T and C/A 
are a useful weapon in pneumonia due to MDR PA, CRE 
and ESBL-producing Enterobacteriaceae. C/T and C/A 
are valid alternatives to spare carbapenems, notably when 
carbapenems are not well tolerated, in empiric and targeted 
treatments in this field.

Pivotal in the use of this new cephalosporins is to 
describe and define better the features of the patient by 
assessing the risk of MRSA or MDR GNB colonization, 
underlying lung abnormalities or systemic diseases, the 
grade of severity of pneumonia, risk of adverse events 
or drug-related toxicity. In other words, currently, the 
approach to pneumonia infection must be targeted to the 
individual based on the clinical situation, the intrinsic 
host characteristic, the susceptibility profile, and local 
epidemiology and the “universal pneumonia antibiotic 
strategy” is no longer acceptable for treating lung infections.
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