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Introduction 

Nowadays we have many examples of complex systems 
at macroscopic scale: the climate system, a number of 
ecosystems on the Earth, the global economic system, 
internet, etc. In any case, none of them gets close to the 
complexity of the human body, both considered as itself 
or, even more, together with its relationships with the 
surrounding environment.

As well known, the difficulties in describing and 
predicting the behaviour of these systems are deeply linked 
with the multiple connections of their constitutive elements 
and the many feedbacks arising from frequent cause-effect 
closed chains. All these characteristic features lead to a 
general nonlinear behaviour of these systems, more or less 
close to a linear one, depending on their “status” and the 
values of certain critical thresholds.

In this situation, a dynamical description of these systems 
is generally very difficult and sometimes impossible. Thus, 
data-driven methods have been worked out for possibly 
disentangling their skeins and achieving correct information 
about cause-effect relationships, especially about the final 
effects of external/environmental forcings on the behaviour 
of the systems themselves. Obviously, statistical methods 

are usually involved in these attempts to extract knowledge, 
from the simplest techniques, such as correlation and 
regression analyses, up to the most sophisticated ones.

In this framework, as we will see, modelling a complex 
system (or the relationships between this system and its 
external environment) by artificial neural networks (ANNs) 
gives the possibility to fully take nonlinearities into account, 
even without considering the number of closed loops 
present in the system itself and their complex interactions 
and balance.

At present, ANNs are developed and used in many 
fields of the contemporary scientific research, with several 
different purposes. Here, I limit to describe and apply 
a basic kind of ANNs—the feedforward networks with 
backpropagation training—which is able to perform realistic 
nonlinear multiple regressions in a reliable manner, if 
applied correctly. Here, “realistic” means that the regression 
“law” found is a reasonable one and is not affected by 
problems which frequently arise in nonlinear systems, such 
as overfitting. On the other hand, “reliable” means that 
the results can be considered robust and are not affected 
by variabilities inside the network structure. Obviously, all 
these considerations will appear clearer when ANNs will 
be formally introduced and then applied to concrete case 
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studies.
Data-driven models—and especially artificial intelligence 

methods—have been recently considered as the fundamental 
tool for achieving knowledge in a big-data environment (1). 
Without entering into the debate on this topic, I would like 
to stress that, if we exclude large epidemiological studies, 
frequently in health sciences we have to do with short series 
of data, rather than with long ones. Thus, a technique which 
allows us to handle a small-data nonlinear environment is 
perhaps more useful. In what follows, I will introduce and 
apply a specific ANN tool for extracting knowledge from a 
limited observational or experimental landscape.

In doing so, I first describe structure and functioning of 
feedforward ANNs with backpropagation training (Section 2), 
then going towards the introduction of a specific ANN tool 
for analyzing small datasets (Section 3). In this framework, 
in Section 4 a specific application of ANNs is presented and 
discussed, also introducing some interesting preliminary 
analysis which could drive the networks to more performant 
results, for instance through data preprocessing from 
previous knowledge of the system under study. Finally, brief 
conclusions are drawn.

Feedforward neural networks with 
backpropagation training

As easily understandable, the development of ANN models 
has been clearly inspired by neurosciences: see (2,3) for an 
historical introduction to this field and for the fundamentals 
of the networks presented in this Section. At present, of 
course, there are many studies about a detailed simulation 
of neurons and their connections in the animal and human 
brains via ANNs. However, the ANN models presented 
here do not aim to be biologically realistic in detail, but 
they are chosen uniquely for their ability to find nonlinear 
realistic relationships between some causes and some 
indices which summarize the behaviour of a certain complex 
system.

In doing so, I deal explicitly with feedforward neural 
networks, which are the most applied to environmental 
and health studies, even if many distinct kinds of network 
models have been obviously worked out: see (4,5) for other 
examples and their applications.

More specifically I will describe the structure and 
functioning of a “multilayer perceptron” with one hidden 
layer and one output (see Figure 1, where this kind of 
network is depicted together with the notations used in 
this paper). This is a quite standard tool for studying cause-

effect relationships in a complex system, with the purpose 
of reconstructing the behaviour of a certain variable 
starting from knowledge of other (causal) variables which 
we estimate to be important for driving its evolution. The 
limitation to just one layer of hidden neurons is justified by 
the fact that one hidden layer is enough to approximate any 
continuous function (6,7).

The fundamental elements of the network are the 
connections, with their associated weights (wjk and Wij), 
and the neurons of the hidden and the output layers, which 
represent the single computational units (they calculate the 
result obtained by the application of an activation function 
to the weighted sum converging at the neuron: see eq. [1] 
in what follows). In this architecture of the network each 
neuron is connected to all the neurons of the previous and 
the following layer; there are no connections between the 
neurons on the same layer.

If we consider the inputs as some causes which drive 
the output (our effect), it is clear that our aim is to find 
a transfer function that correctly leads from inputs to 
the correct output behaviour (the so-called “target”). As 
a matter of fact, once fixed the weights, the nonlinear 
functions gj calculated by the hidden neurons and the linear 
function fi calculated at the output neuron, this network 
is able to do so. In fact, in the general case of multiple 
outputs, the i-th output is given by:
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where:

•	
µ
kI  = inputs (usually normalized between 0 and 1, or 

Figure 1 The structure of a feedforward network (a multilayer 
perceptron with one hidden layer and one output neuron).
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-1 and 1);
•	 wjk = connection weights between input and hidden 

layers;
•	 Wij = connection weights between hidden and output 

layers;

•	
µ
jV  = output of the hidden neuron Nj = input element 

at the output neuron Ni;

•	 










−+=





 µβµ

jhjhjg exp1/1  (for inputs normalized 
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
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
=







2tanh βµ
jhjg  (for inputs 

normalized between -1 and 1), with the steepest 
parameter β which is often set to 1;

•	 µµ
ihihif =





  ;

•	 µ
ih  and 

µ
jh  are weighted sums implicitly defined in 

eq. [1].
As cited above, eq. [1] is written for the general case of 

multiple outputs. In our case of a single output i =1.
As evident from eq. [1], the output depends critically on 

the values of the weights wjk and Wij, exactly as in a multiple 
linear regression the value of the dependent variable y 
depends on the values of the coefficients associated to 
the linear terms of the independent variables x, z, t, etc. 
Thus, in order to find a successful “regression law”, as in a 
multiple linear regression we minimize the distance between 
the specific values of y and the real data, also in a nonlinear 
regression performed by an ANN we must minimize the 
distance between our reconstructions (outputs) of the 
observational or experimental data and the data themselves. 
Thus one tries to minimize the following squared cost 
function 
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for every input-target pair (pattern) μ, where µ
iT  (the 

targets) represent our observational data of a certain 
variable which summarizes the real behaviour of the system 
under study, and µ

iO  are the results of our ANN model.
While this minimization activity is quite trivial for linear 

regressions, in our multiple nonlinear cases it is a critical 
one. Several methods have been developed for approaching 
this problem. Here, I briefly describe an iterative procedure, 
the so-called error backpropagation training.

First of all, one randomly chooses a set of initial weights. 
Then he applies eq. [1] in a forward step, so finding an 
output. At this point, an estimation of Eμ can be performed. 

Usually the values of target and output can be very distant 
and our reconstruction unsatisfying. Thus one searches 
for the minimum of eq. [2] by means of a backward step 
in which he changes the values of the weights via the 
following rules:
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[3]
Here η is the so-called learning rate, which determines 

the amount of the term, coming from the minimization 
of the cost function via a gradient-descent rule, which our 
model takes into account. This term allows the model to 
climb down the valleys of the landscape of the cost function 
(shown in Figure 2) towards a minimum. m is the so-called 
momentum coefficient: it represents the “inertia” of this 
method and is very useful in order to avoid entrapment 
of the solution in a local minimum, because it permits 
to jump over them, leaving the possibility to achieve the 

Figure 2 A cost function depending on just 2 weights. The 
learning rate terms in eq. [3] push down the system to minimize 
the cost function.
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absolute minimum (Analogous equations can be applied to 
the update of the so-called thresholds of the neurons. The 
threshold, or bias, is an internal value of each neuron, which 
is subtracted from the total input before computating the 
functions g and f. The use of these thresholds permits to 
limit the value of the total input. Here, I have omitted any 
thresholds from this formal description, because they can 
always be treated as further connections linked to an input 
neuron that is permanently clamped at 1. Therefore, the 
update of the threshold weights can be performed through 
equations similar to eq. [3].).

At this point, a new forward step with the new values 
of weights can be performed, finding a new estimation of 
Eμ. Successive backward-forward cycles can be performed 
till the desired accuracy in estimation will be achieved, for 
instance under a certain threshold S:
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where M is the number of input-target pairs (patterns) and 
N is the number of output units.

However, an ANN is so powerful that it is able to obtain 
a nonlinear function that reconstructs in detail the values 
of targets starting from data about inputs if every input-
target pair is known to it, and a large number of neurons 
in the hidden layer are allowed. But in this case, ANNs 
overfit data and no realistic regression law can be obtained 
(Here, the number of hidden neurons is the analogue of 
the degree of the polynomial in a polynomial regression 
for fitting experimental data. If you have 100 experimental 
data on a Cartesian plan, you can always fit them perfectly 
by a polynomial of degree 99, but nobody can say that it 
represents a natural law. In fact, if you try to fit other data 
from another sample of the same population, you obviously 
see that the score of this high-degree polynomial is lower 
than that of a low-order one: we have overfitted our 
sample). Thus, we have to consider only a small number 
of hidden neurons and, at the same time, we must exclude 
some input-target pairs from the training set on which the 
regression law is built. Only if the map derived from the 
training set is able to describe the relation between inputs 
and target even on independent sets can we say that a 
realistic regression law has been obtained.

An ANN tool for analyzing small datasets

In the backpropagation framework previously described, the 
number of hidden neurons is taken low [a few theoretical 

rules and many empirical methods are used for this—see, 
for instance, (8)] and a training-validation-test procedure is 
usually adopted for the optimization of an ANN model. 

In short, the entire sample of data is divided into 
three subsets (Figure 3). First of all, the backpropagation 
algorithm is applied on a training set, then, at each step of 
iteration, the performance of the obtained input-output 
map is validated on distinct data (the so-called validation 
set), by considering a forward step from the inputs of the 
latter set to their outputs, through a network with the 
weights fixed at this step by the backpropagation method on 
the training set. The iteration process is stopped when the 
performance on the validation set begins to decrease, even 
if the performance on the training set continues to increase 
under certain desired thresholds (see Figure 4). This 
procedure, called early stopping, is performed to avoid the 

Figure 3 The total set of data is divided into three distinct subsets 
(the squares represent inputs-target pairs).

Figure 4 Sketch of the early stopping procedure. ε represents the 
errors done in estimating the targets through eq. [2], both on the 
training set (blue line) and the validation set (red line) at increasing 
steps of the backpropagation method. The training is stopped at 
the step indicated by the vertical line, when there is a minimum 
error on the validation set.

Training steps

ε

training set Validation set test set
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overfitting due to a too much close reconstruction of the 
data in the training set. Finally, a test set of data, completely 
unknown to the network, is considered. Just on this test set 
one can measure the real performance of the ANN model 
in reconstructing (in many cases, forecasting) new data and 
events.

In this way we are generally able to obtain realistic 
nonlinear transfer functions between variables that may be 
linked by cause-effect relationships in a complex system. 
In order to do so, however, we need a big sample of data 
available. If this is not the case, as often happens in health 
studies, the exclusion from the training activity of the 
data contained in both validation and test sets can lead to 
exclude peculiar behaviours of the system which may be not 
represented in the training set: obviously, this undermines 
the general validity of the regression law found.

In order to avoid this problem, an ANN tool including 
a particular training-validation-test procedure for small 
datasets has been developed some years ago and recently 
refined in order to obtain not only realistic regression 
laws, but also reliable ones. One can refer to (9,10) for 
the fundamentals of this tool, to (11-13) for some recent 
applications to problems characterized by limited data, and 
to (14) for the updated version of the specific procedure 
cited above.

The fundamental idea for dealing with small datasets is 

to maximize the extension of the training set by a specific 
facility of the tool, the so-called all-frame or leave-one-
out cross validation procedure. Here I refer directly to the 
generalized version of this procedure first introduced in (14): 
see Figure 5 for a sketch of it. 

In short, each target is estimated—we obtain an output—
after the exclusion of the corresponding input-target pair 
(pattern) from the training and validation sets used to 
determine the connection weights. Referring to Figure 5, the 
white squares represent the elements (input-target pairs) of 
our training set, the black squares represent the elements of 
the validation set and the grey square (one single element) 
represents the test set. The relative composition of training, 
validation and test sets changes at each step of an iterative 
procedure of training, validation and test cycles. A ‘hole’ in 
the complete set represents our test set and moves across 
this total set of pairs, thus permitting the estimation of all 
output values at the end of the procedure. Furthermore, 
the validation set is randomly chosen at every step of our 
procedure and the training stops when an increase in the 
mean square error (MSE) in the validation set appears. This 
new procedure allows us to definitely avoid any overfitting 
on data we want to reconstruct by ANNs.

Obviously, the results of this generalized leave-one-
out procedure critically depend on the random choices 
regarding both the initial weights and the elements of 
the validation set. For taking this fact into account and 
obtaining more robust results, we can perform ensemble 
runs of the ANNs, by repeating a certain number of times 
(usually 20-30) every estimation shown in Figure 5 with new 
random choices for both the weights and the elements of 
the validation set. In particular the change in the values of 
the initial weights allows the model to widely explore the 
landscape of every cost function, starting from different 
initial points in the multidimensional analogue of Figure 2.

When one averages on these multiple (ensemble) runs 
of the model, he is able to obtain results which are more 
robust and reliable, because they do not depend on the 
variabilities connected with the network initialization and 
with the random choice of the validation set.

An example of application

Since the last decade of the twentieth century, several 
applications of ANNs have been performed in medical 
sciences: see, for instance, (15-17) and references 
therein. There was a wide range of applications, from 
epidemiological studies to technical analyses of EEGs, 

Figure 5 Sketch of the generalized leave-one-out procedure 
[courtesy from Wiley LTD (14)].
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from the standard topics of medical sciences to genetics. 
In any case, the adoption of ANNs led to some kind of 
improvement in our knowledge of the topic considered, due 
to the accurate handling of data about a certain nonlinear 
subsystem of our body, possibly in interaction with its 
internal and external “environment”.

Here, I would like to show how to apply the tool 
previously described in order to study the possible causes 
of illness events, also giving a concrete example in the area 
of thoracic disease, where the tool itself has been already 
used (18).

In general, when dealing with a complex system, its 
behaviour can be driven by many causes. The onset of a 
disease, for instance, may be due to a particular combination 
of causal factors. This is particularly evident for some 
thoracic diseases, due to the direct interaction of the 
respiratory apparatus with external factors, such as different 
values of meteorological parameters and pollutants. 

In this framework, ANNs can help us to identify the 
possible causes and their peculiar combination linked to the 
onset of a certain disease, especially in cases in which we do 
not possess a clear knowledge of the dynamical relationships 
among these factors. This is properly the case for the onset 
of the Primary Spontaneous Pneumothorax (PNP) studied 
in (18) by the ANN tool previously described. Here I do not 
enter into details of that study, but take it as a concrete case 
to explain which steps can be done when applying an ANN 
model. For further details on this specific application, see (18). 

The first step is to try to understand which causal factors 
may be prominent. A quite standard method adopted for 
this is the linear correlation analysis through calculation of 
the so-called Pearson’s correlation coefficient R. But here 
the system shows nonlinearities, so this method is not able 
to assess possible nonlinear relationships among variables.

Thus, a preliminary statistical analysis can be performed 
in order to explore if linear and nonlinear correlations 
among the variables of interest have the same magnitude: 
in this way we assess if a fully nonlinear method can lead 
to differences (hopefully, improvements) in the description 
of the system. If we use a neural network jargon, we can 
call “inputs” the variables used in order to model the 
investigated behaviour of our system, for instance the onset 
of a disease (which is our “target”). Now we can compare 
the relative importance of inputs by means of linear and 
nonlinear bivariate analyses against the target. Here we 
use the standard linear correlation coefficient R and its 
nonlinear generalisation Rnl, the so-called correlation ratio, 
whose square can be written as (10,19):
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We can consider the target (the PNP daily cases, in our 
study on PNP) as the dependent variable and one input 
at a time (daily meteorological parameters and pollutant 
concentrations) as the independent variable. Then we group 
the values of the input into classes. Here Rnl is defined in 
terms of the average of the target for every specific ith 
class of the chosen input: in fact, qi is the sample size for 

the ith class of the input, ( )∑= iq
iii yqy α α1  is the average 

of target for the ith class of the input, ( )∑ ∑= i
q

i
i yMy α α1  

is the average of target on all the classes of the input and 

∑= i iqM  is the total size of the set here considered. Of 
course, the value of Rnl depends on the number of classes 
considered: the more reliable value can be obtained for 
the maximum number of classes that allows us to obtain a 
smooth histogram.

In doing so, in general one founds differences between 
linear and nonlinear correlation values for the same input-
target sets; in particular, he is able to discover that inputs 
having low linear correlation with the target sometimes 
assume high nonlinear correlation values. 

Even if the correlation ratio does not measure all types 
of nonlinearity, calculations of Rnl on our PNP problem 
allowed us to understand that some nonlinearities are 
hidden in the relationships among the variables considered 
there. Furthermore, as a consequence of these bivariate 
analyses, the inputs to be considered for an optimal ANN 
nonlinear regression could be generally different from the 
variables chosen for an optimal linear regression.

After this preliminary analysis one is able to determine 
the most important single input variables for a successful 
reconstruction of the target behaviour. However, a further 
attention must be required in view of the development of a 
model which is able to do so by considering several inputs. 
In fact, even input variables which are highly correlated 
with the target can lead to poor results once inserted in an 
ANN model, if they show high absolute values of R or Rnl 
between them. In this case, in fact, these variables carry 
almost the same information and the ANN model shall not 
benefit from their joint consideration.

After this input selection, one can build several models 
characterized by different inputs, so performing nonlinear 
multiple regressions via ANNs and finding the best 
configuration of causal variables that permits to explain 
the maximum variance in the target behaviour. Due to 
the nonlinear nature of the system under study, only a 



959Journal of Thoracic Disease, Vol 7, No 5 May 2015

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2015;7(5):953-960www.jthoracdis.com

model such as that described here is able to account for the 
combined nonlinear influence of a set of causal variables on 
a particular effect (our target).

In datasets characterized by short records one can then 
apply the generalized leave-one-out procedure previously 
introduced. In this manner, he is able to identify the most 
important causal variables and to reconstruct at best the 
onset of a disease. This ANN model with fixed weights can 
be obviously applied to forecast future cases, once the values 
of the causal input variables can be predicted (for instance, 
day by day).

In this specific application, the ANN model has been 
applied without any use of our previous knowledge of 
the relationships between inputs and target. Sometimes, 
however, our expertise can be used for making easier the 
task of an ANN model. For instance, if the target and some 
inputs undergo a day-night cycle, the cycle itself may be 
“subtracted” from the series before putting their residual 
data into the network. Refer to (20) for a case of this kind. 
It has been shown that this use of our previous knowledge 
can lead to better results with respect to the previous direct 
application. In particular, the ANN model is often able to 
find a “dynamics” in the residual target behaviour even if it 
can appear as a random one.

Finally, it is worthwhile to say something about what we 
may intend for small dataset. In general, there is no threshold 
for the amount of data we can consider as small. This concept 
is not autonomous, but it is related to the size of the ANN 
we would like to use for modelling the system under study.

Due to the necessity to avoid overfitting, some empirical 
rules [see (8) for more details] must be applied to our analysis. 
In particular, we should require that the number of patterns 
is at least one order of magnitude more numerous than the 
number of connections of the network (including threshold 
ones). Given the number of inputs, this rule allows us to 
calculate how many neurons may be considered in the hidden 
layer without falling into overfitting conditions.

As a last remark, I cite that the performance of an 
ANN model can be estimated by several methods, as 
indicated, for instance, in (21), from the continuous ones, 
till those characterized by thresholds. Typical is the use of 
contingency tables and the related performance measures: 
probability of detection, false alarm rate, Heidke’s skill 
score, relative operating characteristic (ROC) curve, etc.

Conclusions

In this paper, I tried to introduce the reader to a kind 

of neural network models which is particularly useful in 
analyzing nonlinear behaviours in small datasets, with 
the aim of finding causal relationships. The specific tool 
described here has been extensively tested on environmental 
problems and recently used in the analyses of a thoracic 
disease, too. This tool is also implemented in MATLAB® 
and this version is available on request for collaborations or 
independent use after citation.

I hope that this brief review could push some researchers 
in the field of health sciences to adopt neural networks as 
a powerful instrument for disentangling the complexity of 
their subject matter.
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