The first thoracoscopy was performed in 1910, when Hans Christian Jacobaeus inserted a rigid cystoscope into the pleural cavity (1); since then, the technique has undergone far-reaching changes that could not have been foreseen by the earliest practitioners. Major advances both in endoscopic material and in visualisation techniques, together with the use of single-lung ventilation, enabled Landreneau et al to lay the technical and strategic foundations for modern video-assisted thoracic surgery (VATS) in 1992 (2).

Over the last fifteen years, major pulmonary section using VATS has been shown to be both safe and technically-feasible, and to offer a number of advantages over conventional surgery (3,4,5,6,7). Nevertheless, its adoption as a standard technique is proving slow; VATS is not routinely performed in most hospitals, and tends to be used mainly in highly-specialised centres. Recent reviews of the outcomes obtained in large patient series highlight the importance of training surgeons in this complex technique (5,6). Our Department has been performing major pulmonary resections by VATS since 1993, making it one of the pioneering groups in Europe.

The Department also runs a twice-yearly training programme in advanced thoracoscopic surgery at the MINIMALLY INVASIVE SURGERY CENTRE JESUS USON in Caceres (Spain) www.ccmijesususon.com.

Available data suggest that the proportion of lobectomies performed using VATS in Spain is still very small, even below the European average, although widespread interest has been expressed in the adoption of this technique in the country’s leading hospitals.

The present paper reports on the VATS lobectomy technique in use at this institution, on the surgeons’ experience with the technique and on the outcomes obtained over a 16-year period.

Material and methods

This descriptive, retrospective review included all patients un-
dergong VATS lobectomy at the Thoracic Surgery Department, between 1993 and 2009. The clinical records of all patients - drawn from the Hospital archive - were entered into the Unit database (Microsoft® Office Access) for statistical analysis using the software package SPSS 13.0 for Windows.

The following variables were analysed: patient age and sex; clinical diagnosis; clinical staging; pathological staging; date of surgery; conversion to conventional surgery and grounds for conversion; duration of surgery; intraoperative and perioperative morbidity and mortality; and actuarial 5-year survival rates.

**Inclusion criteria**

At this Department, VATS lobectomy has become the procedure of choice for the treatment of early-stage non-small cell bronchogenic carcinoma (NSCBC) and of a number of benign processes. Since March 1993, several indications have been modified and expanded, and - more importantly - the number of contraindications has been reduced. The current indications for VATS lobectomy are:

1. Tumour size < 5 cm, although, like other authors, our team has successfully resected tumours greater than 6 cm (10, 17).

2. Peripheral location, i.e. over 1 cm from the fissure and over 3 cm from the lobar carina. This is a relative criterion, since lobectomies can safely be performed less than 1 cm from the fissure; small series of successful sleeve VATS lobectomies have been reported (13).

3. Stage I, N0, although is this is not a totally exclusive criterion; metastatics intrapulmonary or mediastinal lymph nodes detected intraoperatively do not necessarily contraindicate resection, although they may difficult it.

4. Open fissures, although for certain lobectomies (e.g. right upper), this is not absolutely essential.

Exclusion criteria or contraindications for VATS lobectomy have varied over the years, becoming less restrictive as the Unit's experience has grown. They currently include chest wall invasion, tumour infiltration beyond the fissure, invasion of the pericardium or diaphragm, and neoadjvant radiotherapy or chemotherapy; the latter is also relative, since VATS lobectomy has been shown to be safe and technically viable in patients receiving induction chemotherapy (21, 22), although it might hinder dissection.

**Surgical technique**:

The patient is placed in the lateral decubitus position, and selective intubation is used in all cases. Three entry-port incisions are made to introduce 12 mm trocars: one in the seventh or eighth intercostal space (depending on patient thorax configuration) in the midaxillary line, for the camera; a second just below the scapular vertex in the sixth or seventh intercostal space; and the third in the third or fourth intercostal space in the anterior axillary line. Having confirmed the viability of the technique, an anterior minithoracotomy approximately 4-5 cm long is placed over the fifth intercostal space, without rib spreading, for the insertion of surgical instruments and dissection of vessels and bronchi. The surgeon stands facing the patient, with the principal nurse beside him. Two assistants are placed behind the patient; the more caudally-located of the both operates the camera (Fig. 1).

Exploratory videothoracoscopy is performed to rule out any unforeseen causes of inoperability (e.g. pleural carcinomatosis with no pleural effusion) (10, 18, 34), and to check tumor size and the absence of fissure invasion. The presence of pleural adhesions or small hilar lymph-node swellings is not considered a contraindication for VATS resection.

Anatomical pulmonary resection using VATS entails the individual dissection, stapling and sectioning of the pulmonary vein, pulmonary arteries and bronchi. The superior pulmonary veins are dissected and sectioned prior to artery dissection; this is not essential in the case of the inferior pulmonary veins. Systematic dissection of mediastinal lymph nodes is routinely performed, as in conventional open surgery; the number of lymph nodes removed is similar in our experience to that of conventional surgery (Fig. 2, 3, 4).

**Results**

A total of 349 VATS lobectomies were performed between March 1993 and December 2009. The ratio of male to female patients was 6:1 (292:57). Mean age was 59.7 (range 12-84, mean 63; median 61). A total of 313 cases were diagnosed as non-small cell bronchogenic carcinoma (NSCBC); clinical and pathological stages are shown in Table 1. Twenty-six patients had benign processes (e.g. pulmonary sequestration, cystic adenomatoid malformation, bronchiectasis), 4 patients had carcinoid tumors and 6 patients required lobectomy due to metastases that ruled out wedge resection. The number of patients undergoing each type of lobectomy is shown in Table 2; right upper lobectomy was by far the most common type.
During this period, 22 VATS pneumonectomies were also performed; these are not included, in order to ensure a more uniform sample. There are very few indications for VATS pneumonectomy, and the operation itself - more than the VATS technique - would increase morbidity/mortality, as in open surgery.

Conversion to conventional surgery was more frequent in the early, learning years. The overall conversion rate was 9.4% (n = 33), due to heavy bleeding in 13 cases - always stopped prior to conversion - and to technical difficulties (e.g. extensive and/or very firm adhesions, calcified lymph nodes) in 19 cases. One further patient was converted due to invasion of the pulmonary artery (confirmed after vein sectioning). Mean duration of lobectomy was 148 minutes, but the median duration was 92 minutes, since the procedure was slower at first than in later years.

Mean postoperative stay was 3.9 days. The morbidity rate was 12.8%, mostly involving minor complications (the most common being air leak lasting longer than four days), as shown in Table 3. Perioperative mortality (i.e. up to 30 days post-surgery) was 1.43% (2 cases of sepsis and 1 case each of acute myocardial infarction, pneumonia and cardiorespiratory failure). There were no intraoperative deaths.

The actuarial 5-year survival rate for patients with NSCBC was 80.1%. During follow-up, three patients displayed mediastinal recurrence (despite the removal of mediastinal lymph glands from all patients), one developed cerebral and costal metastases three months post-surgery, two developed metachronic tumours 23 and 48 months postsurgery, respectively; three patients displayed same-lung recurrence. There were seven cases of brain metastasis and seven of multiple metastases.

Discussion

The American College of Chest Physicians, in its evidence-based clinical practice guidelines, suggests that "In patients with stage I NSCLC who are considered appropriate candidates for thoracoscopic anatomic lung resection (lobectomy or segmentectomy), the use of video-assisted thoracic surgery by surgeons experienced in these techniques is an acceptable alternative to open thoracotomy" (13). Yet at present few centres consider this to be the procedure of choice for the treatment of early-stage lung cancer.

Over the last few years, a large number of case reviews have been published strongly suggesting that patients undergoing VATS lobectomy experience less postoperative pain, reduced chest tube time, fewer perioperative complications and shorter hospital stays than those undergoing conventional surgery (3,4,6,7,10,17,18,19,30,32,44,46,48,50,51,52,53). Other reported advantages over open surgery include improved quality of life, particularly in the first year (46), and reduced immunological aggression, evident in lower IL-6 and PCR levels compared to open surgery (15,18,44). Other authors also report fewer delayed or reduced doses of chemotherapy in patients receiving adjuvant chemotherapy (21).

VATS lobectomy should therefore be the therapeutic approach of choice in patients with early-stage NSCLC.
In this series, there were no intraoperative deaths, and perioperative mortality in the 349 patients undergoing major pulmonary resection using VATS was very low (1.43%), a finding also reported for other large series (3, 4, 5, 7, 17).

Although the learning curve has to an extent been rightly blamed for increased morbidity and mortality in this type of surgery (7), this should no longer happen, since the technique is becoming increasingly standardized and detailed, and can be taught and practiced at specialist training centers until thorough mastery is achieved. There is no single standard technique for VATS lobecto-
was naturally higher in the early, learning years. Similar results are seen in the rate of conversion to conventional surgery, which was 9.4%.

The greatest differences relate to the number and placement of trocars facing the patient, and the use of a 0° versus 30° optic (49).

### Table 1 Preoperative and pathological stages of lung cancers resected using video-assisted thoracic surgery

<table>
<thead>
<tr>
<th>Stages</th>
<th>Clinical</th>
<th>Pathologic</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>44.2%</td>
<td>37.7%</td>
</tr>
<tr>
<td>IB</td>
<td>52.6%</td>
<td>54.2%</td>
</tr>
<tr>
<td>IIA</td>
<td>0.92%</td>
<td>2.5%</td>
</tr>
<tr>
<td>IIB</td>
<td>2.3%</td>
<td>5.6%</td>
</tr>
</tbody>
</table>

### Table 2 Major lung resections performed using VATS (1993-2009)

<table>
<thead>
<tr>
<th>Right (n=219)</th>
<th>Left (n=130)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right upper lobectomy: 116</td>
<td>Left upper lobectomy: 70</td>
</tr>
<tr>
<td>Medial lobectomy: 21</td>
<td>Left lower lobectomy: 60</td>
</tr>
<tr>
<td>Right lower lobectomy: 54</td>
<td></td>
</tr>
<tr>
<td>Upper bilobectomy: 12</td>
<td></td>
</tr>
<tr>
<td>Lower bilobectomy: 16</td>
<td></td>
</tr>
</tbody>
</table>

**VATS:** Videoassisted Thoracic Surgery

### Table 3 Morbidity after video-assisted major lung resections

<table>
<thead>
<tr>
<th>Complication</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prolonged air leakage</td>
<td>12</td>
</tr>
<tr>
<td>Atelectasis</td>
<td>8</td>
</tr>
<tr>
<td>Apical air space</td>
<td>6</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>3</td>
</tr>
<tr>
<td>Hemothorax</td>
<td>3</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>3</td>
</tr>
<tr>
<td>Cardiorespiratory failure</td>
<td>4</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>2</td>
</tr>
<tr>
<td>Cerebrovascular accident</td>
<td>2</td>
</tr>
<tr>
<td>Wound infection</td>
<td>1</td>
</tr>
<tr>
<td>Bronchial fistula</td>
<td>1</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td>45 (12.8%)</td>
</tr>
</tbody>
</table>

my, but variations between schools tend to be very minor. The greatest differences relate to the number and placement of trocars and the minithoracotomy, the position of the surgeon behind or facing the patient, and the use of a 0° versus 30° optic (49).

Most surgeons perform an anatomical dissection of vascular and bronchial structures, respecting the surgical and oncological principles of conventional thoracotomy.

Although Lewis and Caccavale reported excellent results in 1998 using simultaneous stapling with no individual dissection, the present authors feel that this technique should only be used when technically required (32). At this department, the technique has only been used once, to perform a left lower lobectomy in a high-risk tetraplegic patient with a T1N0M0 bronchogenic carcinoma, displaying a totally open fissure, but with the vein dissected isolated. The rate of conversion to conventional surgery was 9.4%; the rate was naturally higher in the early, learning years. Similar results are reported by other authors, including Shaw et al (47). The mean duration of surgery is another variable which has decreased as surgeons become more familiar with VATS resection; median surgery time is currently 92 minutes, a figure rather lower than that noted by other authors (30,40).

Survival rates for VATS patients appear to be similar to, or better than, those reported for conventional surgery. Shaw et al reported a 5-year survival rate of 90% for VATS lobectomy, compared with 85% for conventional lobectomy (39). Nevertheless, these results must be viewed with a degree of caution, due to a possible implicit bias at patient selection. The 5-year survival rate for the present series was 80.1% for patients with N NSCLC; this figure is slightly higher than the 77% reported by Mckenna et al and the 78% observed by Onaitis et al (7,45).

Despite the lack of evidence based on large-scale randomized studies comparing videothoracoscopic procedures with conventional surgery the authors firmly believe that if VATS surgery is properly performed, with resection of mediastinal lymph nodes (50,51,52,41), and meets oncological criteria for lung cancer surgery, long-term survival should not be affected by the choice of surgical approach. Watanabe et al reported that the number of lymph nodes removed following VATS lobectomy was similar to that of conventional surgery (36).

To conclude, VATS lobectomy should be the treatment of choice for early-stage NSCLC (T1-T2N0-M0), and also for certain benign pathologies, although further prospective, randomized studies are required to confirm the evidence provided by the large patient series published to date.

### References

10. Loscertales J, Jimenez-Merchan R, Arenas Linares C, Giron-Arjona JC, Congre-
29. Walker WS. Video-assisted thoracic surgery (VATS) lobectomy: Edinburgh
25. Hermansson U, Konstantinov IE, Aren C. Video-assisted thoracic surgery
24. Weissberg D, Schachner A. Video-assisted thoracic surgery-state of the art.
23. Congregado M, Jimenez R, Loscertales J. Resezioni polmonary maggiore. In:
22. Petersen RP, Pham D, Toloza EM, Burfeind WR, Harpole DH Jr, Hanish SI,
18. Loscertales J, Jimenez-Merchan R, Congregado M, Ayarra FJ, Gallardo G,
17. Congregado M, Merchan RJ, Gallardo G, Ayarra J, Loscertales J. Video-assisted
15. Yim AP, Wan S, Lee TW, Arifi AA. VATS lobectomy reduces cytokine responses
14. McKenna Jr RJ. Video-Assisted thoracic surgery for wedge resection, lobecto
13. Mahtabifard A, Fuller CB, McKenna RJ. Video-assisted thoracic surgery
12. Congregado M, Jimenez R, Loscertales J. Resezioni polmonary maggiore. In:
7. Petersen RP. Thoracoscopic lobectomy facilitates the delivery of adjunct