Does the usage of digital chest drainage systems reduce pleural inflammation and volume of pleural effusion following oncologic pulmonary resection?—A prospective randomized trial

Michèle De Waele, John Agzarian, Waël C. Hanna, Colin Schieman, Christian J. Finley, Joseph Macri, Laura Schneider, Terri Schnurr, Forough Farrokhyar, Katherine Radford, Parameswaran Nair, Yaron Shargall


Background: Prolonged air leak and high-volume pleural drainage are the most common causes for delays in chest tube removal following lung resection. While digital pleural drainage systems have been successfully used in the management of post-operative air leak, their effect on pleural drainage and inflammation has not been studied before. We hypothesized that digital drainage systems (as compared to traditional analog continuous suction), using intermittent balanced suction, are associated with decreased pleural inflammation and postoperative drainage volumes, thus leading to earlier chest tube removal.
Methods: One hundred and three [103] patients were enrolled and randomized to either analog (n=50) or digital (n=53) drainage systems following oncologic lung resection. Chest tubes were removed according to standardized, pre-defined protocol. Inflammatory mediators [interleukin-1B (IL-1B), 6, 8, tumour necrosis factor-alpha (TNF-α)] in pleural fluid and serum were measured and analysed. The primary outcome of interest was the difference in total volume of postoperative fluid drainage. Secondary outcome measures included duration of chest tube in-situ, prolonged air-leak incidence, length of hospital stay and the correlation between pleural effusion formation, degree of inflammation and type of drainage system used.
Results: There was no significant difference in total amount of fluid drained or length of hospital stay between the two groups. A trend for shorter chest tube duration was found with the digital system when compared to the analog (P=0.055). Comparison of inflammatory mediator levels revealed no significant differences between digital and analog drainage systems. The incidence of prolonged post-operative air leak was significantly higher when using the analog system (9 versus 2 patients; P=0.025). Lobectomy was associated with longer chest tube duration (P=0.001) and increased fluid drainage when compared to sub-lobar resection (P<0.001), regardless of drainage system.
Conclusions: Use of post-lung resection digital drainage does not appear to decrease pleural fluid formation, but is associated with decreased prolonged air leaks. Total pleural effusion volumes did not differ with the type of drainage system used. These findings support previously established benefits of the digital system in decreasing prolonged air leaks, but the advantages do not appear to extend to decreased pleural fluid formation.