Article Abstract

Thoracoscopic stapler-based “bidirectional” segmentectomy for posterior basal segment (S10) and its variants

Authors: Masaaki Sato, Tomonori Murayama, Jun Nakajima


Thoracoscopic segmentectomy for the posterior basal segment (S10) and its variant (e.g., S9+10 and S10b+c combined subsegmentectomy) is one of the most challenging anatomical segmentectomies. Stapler-based segmentectomy is attractive to simplify the operation and to prevent post-operative air leakage. However, this approach makes thoracoscopic S10 segmentectomy even more tricky. The challenges are caused mostly from the following three reasons: first, similar to other basal segments, “three-dimensional” stapling is needed to fold a cuboidal segment; second, the belonging pulmonary artery is not directly facing the interlobar fissure or the hilum, making identification of target artery difficult; third, the anatomy of S10 and adjacent segments such as superior (S6) and medial basal (S7) is variable. To overcome these challenges, this article summarizes the “bidirectional approach” that allows for solid confirmation of anatomy while avoiding separation of S6 and the basal segment. To assist this approach under limited thoracoscopic view, we also show stapling techniques to fold the cuboidal segment with the aid of “standing stiches”. Attention should also be paid to the anatomy of adjacent segments particularly that of S7, which tends to be congested after stapling. The use of virtual-assisted lung mapping (VAL-MAP) is also recommended to demark resection lines because it flexibly allows for complex procedures such as combined subsegmentectomy such as S10b+c, extended segmentectomy such as S10+S9b, and non-anatomically extended segmentectomy.