Article Abstract

Lung cancer early detection and health disparities: the intersection of epigenetics and ethnicity

Authors: Lane Lerner, Robert Winn, Alicia Hulbert

Abstract

Lung cancer is the most prominent cause of cancer-related mortality. Significant disparities in incidence and outcome characterize the disease’s manifestations among ethnically and racially diverse populations. Complete surgical resection is the most effective curative treatment. However, success relies on early tumor detection. The National Lung Cancer Screening trial showed that lung cancer related mortality can be reduced by the use of low-dose CT (LDCT) screening. However, this test is plagued by a high false positive rate of 97% and the device itself is limited to designated cancer centers due to its expense and size. This restriction makes it difficult for underserved groups to access LDCT screening, the current standard of care. Highly sensitive and specific epigenetic DNA methylation-based biomarkers have the potential to work independently or in conjunction with LDCT screening to identify early-stage tumors. These tests could reduce unnecessary invasive confirmatory diagnostic tests and their associated morbidity and mortality. These tests also have the opportunity to bring lung cancer screening to the community thereby reducing unequal accessibility. However, epigenetic alterations are closely linked to the interplay between hereditary and environmental factors such as diet, lifestyle, ethnic ancestry, toxin exposure, residential segregation, and disparate community support structures. Despite this, the overwhelming number of early detection DNA methylation biomarker studies to date have either failed to control for ethnicity or have employed heavily Caucasian-biased patient cohorts. This review seeks to summarize the literature related to the early detection of lung cancer through molecular biomarkers among different ethnicities. Ethnical specific epigenetic biomarkers have the potential to be the first step towards an accessible, available personalized medicine approach to cancer through liquid biopsy.