Article Abstract

High-resolution computed tomography features and CT-guided microcoil localization of subcentimeter pulmonary ground-glass opacities: radiological processing prior to video-assisted thoracoscopic surgery

Authors: Zi-Xuan Wang, Lin Li, Zhe Zhang, Guo-Hua Wang, De-Mao Kong, Xu-Dong Wang, Fa Wang

Abstract

Background: With the rapid development of high-resolution computed tomography (HRCT), low-dose CT scanning and video-assisted thoracoscopic surgery (VATS), smaller pulmonary nodules can be detected. Subcentimeter ground-glass opacities (GGOs) are extremely difficult to diagnose and accurately locate during VATS and in surgically resected specimens.
Methods: From September 2013 to September 2017, 42 subcentimeter GGO lesions (≤1 cm) in 31 patients who underwent CT-guided microcoil insertion followed by VATS resection were included. All HRCT images were assessed by two experienced radiologists, and CT-guided microcoil localization procedures were performed by two experienced interventional radiologists.
Results: A total of 42 subcentimeter GGOs included 28 malignancies (66.7%) and 14 benign lesions (33.3%). The diameter of malignant GGOs (8.52±1.46 mm) was significantly larger than that of benign lesions (7.04±1.52 mm) (P<0.05). Seven patients had more than one GGO nodule. There were no significant differences in the location, composition, shape, margins, presence of air bronchograms, presence of the pleural indentation sign and presence of the vascular convergence sign between benign and malignant GGOs (P>0.05). All the localization procedures were performed successfully. A small pneumothorax occurred in 9 patients (21.4%), and minor hemorrhage in the lung parenchyma occurred in 8 patients (19.0%). All GGOs were easily identified during VATS and were definitively diagnosed.
Conclusions: Common HRCT features cannot be used as criteria for the differential diagnosis of subcentimeter benign and malignant pulmonary GGOs. CT-guided microcoil marking of these lesions prior to VATS is a feasible, safe, and effective procedure for the localization of subcentimeter pulmonary GGOs.