Article Abstract

The role of plasma miRNAs in the diagnosis of pulmonary nodules

Authors: Ke-Xing Xi, Xue-Wen Zhang, Xiang-Yang Yu, Wei-Dong Wang, Ke-Xiang Xi, Yong-Qiang Chen, Ying-Sheng Wen, Lan-Jun Zhang


Background: In this study, we aimed to assess the clinical utility of detection of plasma microRNAs (miRNAs) in the diagnosis of pulmonary nodules.
Methods: Fifty-seven patients with pulmonary nodules who had undergone surgery were enrolled in our study from July 2016 to July 2017 at Sun Yat-sen University Cancer Center. We measured the expression levels of 12 miRNAs (miRNA-17, -146a, -200b, -182, -155, -221, -205, -126, -7, -21, -145, and miRNA-210) in plasma samples of 57 patients, including 15 benign pulmonary nodules patients and 42 malignant pulmonary nodules patients. The levels of these miRNAs were detected by Real-time quantitative polymerase chain reaction (RT-PCR). The receiver operating characteristic (ROC) curve was used to assess the diagnostic performance of plasma miRNAs for non-small cell lung cancer (NSCLC).
Results: The expression levels of plasma miRNA-17, -146a, -200b, -182, -155, -221, -205, -126, -7, -21, -145, and miRNA-210 are not associated with gender, age, pTNM stage, differentiation grade. The levels of miRNA-17, -146a, -200b, -182, -221, -205, -7, -21, -145, and miRNA-210 in NSCLC patients are significantly higher than those in benign pulmonary nodules patients (P<0.05). However, there are no significant differences for the expression levels of miRNA-155 and miRNA-126. For diagnosing NSCLC, the sensitivity and specificity was 66.7% and 80.0% for miRNA-17, 54.8% and 86.7% for miRNA-146a, 64.3% and 86.7% for miRNA-200b, 83.3% and 73.3% for miRNA-182, 54.8% and 80.0% for miRNA-221, 73.8% and 80.0% for miRNA-205, 78.6% and 73.3% for miRNA-7, 78.6% and 60.0% for miRNA-21, 78.6% and 73.3% for miRNA-145, 76.2% and 73.3% for miRNA-210.
Conclusions: Plasma miRNAs (miRNA-17, -146a, -200b, -182, -221, -205, -7, -21, -145, and miRNA-210) have relatively high sensitivity and specificity for the diagnosis of NSCLC. These plasma miRNAs may be the potential biomarkers for early diagnosis of lung cancer.