TY - JOUR AU - Singh, Parmanand AU - Almarzooq, Zaid AU - Codell, Noel C. F. AU - Wang, Yi AU - Roman, Mary J. AU - Devereux, Richard B. AU - Weinsaft, Jonathan W. PY - 2017 TI - Cine-CMR partial voxel segmentation demonstrates increased aortic stiffness among patients with Marfan syndrome JF - Journal of Thoracic Disease; Vol 9, Supplement 4 (April 30, 2017): Journal of Thoracic Disease (New Imaging and Diagnostic Modalities in Cardiac Surgery) Y2 - 2017 KW - N2 - Background: Standard cine-cardiac magnetic resonance (CMR) imaging is commonly used to evaluate cardiac structure, geometry and function. Prior studies have shown that automated segmentation via partial voxel interpolation (PVI) accurately quantifies phantom-based cardiac chamber volumes and necropsy left ventricular myocardial mass. Despite this, the applicability and usefulness of PVI in the determination of physiologic parameters of the aorta such as aortic stiffness has yet to be investigated. Methods: Routine CMR was conducted with a 1.5T (GE) scanner with pulse sequences similar to that of standard CMR (parameters: TR 3.4 msec, TE 1.14 msec, flip angle 60°, temporal resolution ~30–40 msec). Views were obtained in standard cardiac-oriented longitudinal or axial views (2, 3 and 4 chambers). Within non-dilated regions of the descending thoracic aorta, aortic area was quantified via a novel PVI automated process (LV-METRIC), which discerns relative amounts of blood pool in each voxel. Aortic stiffness, as calculated from brachial artery pulse pressure and aortic area at maximal and minimal dimensions, was evaluated in 60 total segments (one segment per patient). All segments were in the descending aorta and were not aneurysmal. Results: Sixty patients in total were studied, including 50 that had genetically-related aortic disorder [35 bicuspid aortic valve (BAV), 15 Marfan syndrome (MFS)]. Ten normal controls without aortic disease were included for comparison purposes. All patients (n=60) had evaluable CMR images for assessment of the descending aorta with use of automated segmentation. Patients with BAV and MFS were similar to controls in age, systolic blood pressure, brachial artery pulse pressure, smoking status or hypercholesterolemia (all P=NS). There were more women (P Conclusions: The application of PVI to standard CMR imaging can assess abnormal descending aorta functional indices in normal caliber segments in MFS subjects. Future prospective studies with larger subject populations are warranted to further determine the overall utility of automated aortic segmentation as a possible early biomarker of aortic dysfunction before overt dilatation. UR - https://jtd.amegroups.org/article/view/13229