%0 Journal Article %T The involvement of the laminin-integrin α7β1 signaling pathway in mechanical ventilation-induced pulmonary fibrosis %A Liao,, Han-Di %A Mao, Yong %A Ying, You-Guo %J Journal of Thoracic Disease %D 2017 %B 2017 %9 %! The involvement of the laminin-integrin α7β1 signaling pathway in mechanical ventilation-induced pulmonary fibrosis %K %X Introduction: The central objective of the study was to determine the possibility and potential mechanism by which the laminin-integrin α7β1 signaling pathway acts on mechanical ventilation (MV)-induced pulmonary fibrosis in a rat model. Methods: Fibrosis rat models were established via the mechanical injury method. Ninety rats were recruited and divided into the normal, low tidal volume (LVT), huge VT (HVT), Arg-Gly-Asp-Ser (RGDS), LVT + RGDS and HVT + RGDS groups. On day 0, 3, and 7 after model establishment, the pulmonary hydroxyproline content was measured using alkaline hydrolysis and the pulmonary index was also calculated. All rats in each group were executed on day 0, 3 and 7. The histopathological changes detected in the left pulmonary tissues were observed using hematoxylin-eosin (HE) and Masson staining methods. Discussion: The mRNA and protein expressions of Wnt-5A, β-catenin, E-cadherin and Collagen I in the Wnt/β-catenin signaling pathway were detected using both reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting methods. Immunohistochemistry was employed to detect the fibronectin (FN) expression in the pulmonary tissues on the 7th day. All indexes in the RGDS and LVT + RGDS groups indicated no explicit differences compared with the normal group. In the LVT, HVT, HVT + RGDS groups, the respective weights of the rats and the expression of E-cadherin on the 7th day exhibited decreases, however the pulmonary index, hydroxyproline, pulmonary alveolar inflammation, pulmonary fibrosis, FN expression, and protein expressions of Wnt-5A, β-catenin, and Collagen I all displayed increased levels (all P Conclusions: The findings of the study suggested that RGDS could act to block the laminin-integrin α7β1-signaling pathway, ultimately contributing to the inhibition of the progression of MV-induced pulmonary fibrosis. %U https://jtd.amegroups.org/article/view/16425 %V 9 %N 10 %P 3961-3972 %@ 2077-6624