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Introduction

Esophageal cancer is the eighth most common cancer 
worldwide. In 2015, approximately 18,170 people were 
diagnosed with esophageal cancer, and 15,450 people died 
of the disease in the US (1). Esophageal cancers are divided 
into two histological groups: squamous cell carcinoma 
(SCC) and adenocarcinoma (AC). SCC is common in 
Asia, especially in China, while AC is common in North 
America and in Western countries. SCC accounts for 
up to 90% of all esophageal cancers, but the incidence 
of AC has surpassed that of SCC in North America and 
Western countries, especially in white men compared with 
white women (2). Barrett’s esophagus is recognized as a 

precursor lesion of AC, which primarily originates in the 
lower third of the esophagus (3). Radiotherapy has become 
an important treatment modality, especially for those 
patients with unresectable esophageal cancer. Free radicals 
produced by ionizing radiation may directly affect the 
DNA or they may indirectly affect other cellular molecules, 
especially H2O. These radicals induce the formation of 
reactive oxygen species (ROS) and subsequent oxidative 
stress (4). However, resistance to radiation results in relapse 
and treatment failure. Modalities for the improvement of 
radiosensitivity are urgently needed for clinical application. 
The effect of radiotherapy alone is limited, but concurrent 
chemoradiotherapy and targeted therapy can significantly 
improve survival rates and control local-regional recurrence 
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in patients with esophageal cancer.

Cellular mechanisms of radioresistance

Cell cycle checkpoint regulation

The cell cycle checkpoint signaling pathway is a critical 
process that protects cancer cells from DNA damage. 
ATM is a phosphatidylinositol kinase-related protein that 
modulates cell cycle checkpoints after DNA damage is 
induced by ionizing radiation. Activation of ATM results 
in dimer dissociation, autophosphorylation and the 
phosphorylation of downstream proteins including p53, 
CHK2, and RAD9, among others. Cells are often blocked 
in the G1/S or G2/M phases, which provides time for cells 
to repair DNA double-strand breaks (DSBs). Activation 
of the Cyclin E/CDK2 complex controls G1/S transition 
through the p53/p21 pathway (5). p53 is a key cell cycle 
checkpoint regulatory protein that induces G1/S arrest 
through the activation of p21, which belongs to the Cip/Kip  
family of CDK inhibitors. Activation of the Cdc2/Cyclin 
B complex controls G2/M transition through the CHK2 
pathway (6). Radiation-induced G1/S arrest prevents 
the replication of damaged DNA and subsequent entry 
into S phase, while G2/M arrest prevents the segregation 
of aberrant chromosomes prior to entry into M phase. 
Apoptosis is induced to remove the damaged cells if the 
damage is irreversible or if the phase is dysfunctional. In 
short, radiation-induced cell cycle checkpoint signaling 
pathways protect cells from radiation damage and 
promote the  surv iva l  of  cancer  ce l l s .  Numerous 
studies have demonstrated that abrogation of the G2 
checkpoint enhances the radioresponse in esophageal 
cancer cells. Qin et al. revealed that the small molecule 
inhibitor YM155 enhances radiosensitivity through the 
abrogation of the G2 checkpoint and the suppression 
of homologous recombination repair in esophageal 
SCC (7). Che et al. found that the COX-2 inhibitor NS398 
enhances radiosensitivity in radioresistant esophageal 
cancer ECA109R50Gy cells through redistribution of the 
cell cycle, inhibition of expression of the catalytic subunit 
of DNA-dependent protein kinases and induction of tumor 
cell apoptosis (8).

Cancer stem cells (CSCs)

Esophageal cancer stem cells (ECSCs) are populations of 
esophageal cancer cells that possess stem cell properties 

and that can promote the initiation of tumors whose 
cells have the ability to self-renew. CD44, CD71, CD90, 
CD133, CD271, aldehyde dehydrogenase (ALDH), and 
ATP-binding cassette subfamily G member 2 (ABCG2) 
have been reported as potential cell surface markers of 
ECSCs (9-11). The mechanisms by which ECSCs become 
radioresistant are as follows: (I) DNA repair. The DNA 
DSBs that occur following radiation are mainly repaired 
by nonhomologous end joining (NHEJ), which involves 
repair and recognition by genes such as ATM, XECC4, 
Ligase 4 and DNA-PKcs. Accumulating evidence has 
revealed that the ATM signaling pathway is more active 
in CSCs than in normal cancer cells. Chen et al. isolated 
ECSC, as a side population (SP), from normal esophageal 
cancer (EC9706 cells) and found that ECSCs avoided 
apoptosis through a decrease in DNA damage and an 
increase in DNA damage repair (12). Qian et al. found that 
human positive cofactor 4 (PC4) plays a critical role in 
NHEJ and DNA damage repair and that the knockdown 
of PC4 increases apoptosis and mitotic catastrophe (MC) 
induced by radiation in esophageal SCC (13); (II) cycle 
distribution. The radiosensitivity of esophageal cancer 
cells changes as they progress through the different cell 
cycle phases. Cells exhibit more radiosensitivity in the 
mitotic phase and more radioresistance in late S phase. 
CSCs are common in the cell cycle phase in which cells 
are quiescent. Following radiation, checkpoint kinases 
activate the ATM and ATR signaling pathways in CSCs to a 
greater extent than in normal esophageal cancer cells; (III) 
free radical and ROS scavenging. CSCs can decrease the 
level of ROS following radiation through the activation of 
ROS scavenging enzymes such as superoxide dismutase 
(SOD) and glutathione (GSH). GSH is an intracellular 
antioxidant molecule whose synthesis is catalyzed by 
the regulatory subunit of the glutamate-cysteine ligase. 
As a glutamate-cysteine ligase inhibitor, buthionine 
sulfoximine (BSO) decreases the colony formation 
ability of CSCs and increases the antioxidant ability and 
radiosensitivity of CSCs (14). The activation of markers 
of radiosensitivity, such as the transcription factors Nrf2 
and nuclear factor κB (NF-κB), improves the potency 
of ROS scavenging enzymes. (IV) Interaction with the 
stromal microenvironment. Resident fibroblasts secret 
transforming growth factor β (TGF-β) and promote 
epithelial-mesenchymal transition (EMT) in CSCs, which 
could decrease radiosensitivity. CD44 is an extracellular 
matrix receptor that is expressed on the surface of CSCs 
and is related to the degree of malignancy. 
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EMT
 

EMT is a process through which epithelial cells acquire 
mesenchymal properties during embryonic development 
and cancer progression. EMT is characterized by the loss 
of the epithelial marker E-cadherin and the acquisition 
of mesenchymal markers including N-cadherin and 
Vimentin, among others. E-cadherin is a cell adhesion 
molecule that plays a critical role in the maintenance of 
epithelial structure. Repression of E-cadherin is the key 
step in EMT, and this progression may be modulated 
by the zinc finger proteins Snail and Slug. EMT has 
been reported to be associated with poor prognosis and 
chemoradioresistance in numerous malignances. In 
addition, irradiation might promote the migration and 
invasiveness of esophageal cancer cells through the EMT 
process. He et al. developed a radioresistant esophageal 
cancer cell line (KYSE-150RR) via fractional radiation and 
found that radiation-induced EMT occurred primarily 
through the PTEN-dependent Akt/Snail signaling 
pathway (15). 

Multiple pro-survival and pro-proliferation signaling 
pathways

A b e r r a n t  W n t /β - c a t e n i n  s i g n a l i n g  c a n  l e a d  t o 
chromosomal instability and tolerance of DNA damage 
through its regulation of the mitotic spindle (16). The 
Wnt signaling pathway downregulates the level of the 
antiapoptotic gene Bcl-2 as well as the levels of phospho-
Akt and upregulates the proapoptotic gene Caspase-3 
to drive normal stem cells to become CSCs. Epidermal 
growth factor receptor (EGFR) and G-protein-coupled 
receptors activate the PI3K-Akt-mTOR signaling pathway 
to promote tumor cell growth, proliferation and survival 
via the inhibition of apoptosis (17). JAK or Src tyrosine 
kinase activates STAT3, which functions in tumor cell 
proliferation, differentiation and survival. Autophagy, 
as a conserved process, mediates the degradation of 
dysfunctional organelles and the turnover of long-lived 
proteins and limits the effect of radiotherapy through 
its support of metabolic mechanisms in conditions 
of cellular stress (18). Su et al. revealed that FH535 
increases the radiosensitivity of radioresistant esophageal 
cancer KYSE-150 cells (KYSE-150R) through a reversal 
of the expression of Wnt/beta-catenin signaling pathway 
proteins (Wnt 1, FZD1-4, GSK3β, CTNNB1 and Cyclin 
D1) (19) (Figure 1).

Tumor-associated microenvironment (TAM) and 
radioresistance

Hypoxia and the HIF-1 pathway

Hypoxia, as a primary mechanism of resistance to 
radiotherapy and a pathophysiologic characteristic of 
malignant tumors, interferes with the repair of DNA 
damage (20). Cancer cell hypoxia often results from the 
fast rate of tumor growth and when tumors require more 
than the limited distribution of oxygen within blood 
vessels (21). At the same time, abnormal angiogenesis 
and poor vascular function also result in reduced oxygen 
tension (22). Accumulating evidence from radiation 
biology and oncology studies has revealed that cancer cells 
under hypoxic conditions are approximately 2–3 times 
more radioresistant than those under normal conditions. 
Radiosensitivity is slowly reduced when the pressure of O2 is 
less than 30 mmHg, while cells are maximally radioresistant 
when the pressure is less than 0.5 mmHg (23). HIF-1, an 
important transcription factor, induces the expression 
of multiple genes associated with cellular metabolism, 
metastasis of tumor cells and angiogenesis. HIF-1, as a 
heterodimeric factor, contains an α-subunit (HIF-1α) and 
a β-subunit (HIF-1β). Under normal oxygen conditions, 
HIF-1α is rapidly degraded through hydroxylation 
by prolyl hydroxylases (PHDs) and is ubiquitinated 
by a pVHL-containing E3 ubiquitin ligase. However, 
under hypoxic conditions, HIF-1α remains stable (24). 
Using optical imaging, Harada et al. revealed that 
ionizing radiation can activate HIF-1α through a HIF-
1α-dependent gene. In esophageal cancer, radiation 
upregulates the expression of HIF-1α  through an 
improvement in oxidative stress and an increase in the 
availabilities of glucose and oxygen. Subsequently, HIF-1α  
increases the expression of VEGF, which protects vascular 
endothelial cells against the cytotoxic effects of radiation (25).  
Yang et al. demonstrated that berberine enhanced the 
radiosensitivity of esophageal cancer via the inhibition 
of VEGF and HIF-1α in vitro and in vivo (26). Zhu et al.  
found that  recombinant human endostat in could 
enhance the radiosensitivity of esophageal SCC via the 
downregulation of the expression of VEGF and HIF-1α 
after radiation therapy and via normalization of the tumor 
vasculature (27).

Cancer-associated fibroblasts (CAFs)

CAFs have been reported to be abundant in the stroma in 
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many cancer types and are regarded to play a critical role 
in the development and progression of esophageal cancer 
and in the promotion of cancer proliferation, invasion, 
metastasis, and angiogenesis (28). CAFs originate from 
cells with an activated myofibroblast-like phenotype and 
are recognized by high levels of fibroblast activation 
protein-α (FAP) and α-smooth muscle actin (α-SMA). 
Underwood et al. found that most patients with esophageal 
adenocarcinoma (EAC) express high levels of stromal 
α-SMA, which predicts a poor survival rate and a poor 
prognosis. They also observed that α-SMA may increase 
the invasion potential of esophageal cancer cells through 
the disruption of the periostin and PI3K-AKT signaling 
pathways (28). Ji et al. indicated that CAFs decrease the 
radiosensitivity of the lung cancer cell lines A549 and 
H1299, which significantly contributes to the proliferation 
and survival of these cancer cells (29).

Tumor-associated macrophages

Tumors have a complex microenvironment that maintains 
the malignant potential of the tumor and promotes cancer 
cell invasion and migration; the most abundant cells in the 
microenvironment are macrophages (30). Macrophages can 
be divided into two subpopulations of cells. The M1 
subpopulation is activated by Toll-like receptor ligands 
and interferon-γ and plays a role in antitumor immunity, 
while the M2 subpopulation is activated by interleukin 
4 (IL-4) or interleukin 13 (IL-13), each of which suppresses 
antitumor immunity. Myeloid-derived suppressor cells 
(MDSCs) are precursors of tumor-associated macrophages 
and dendritic cells (DCs). Tumor-infiltrating macrophages, 
which have a predominantly polarized M2 phenotype, play a 
significant role in the disruption of adaptive immunity; they 
also contribute to the processes of tumor development and 
progression (31). M1 macrophages express high levels of 

Figure 1 Cellular mechanisms of radioresistance: (I) the cell cycle checkpoint signaling pathway is a critical progress that allowing times 
for cells to response to repair DNA damage. Cell cycle often arrests in G1/S or G2/M period. The primary mechanism of reparation 
of DNA double-strand breaks (DSBs) is Nonhomologous end joining (NHEJ); (II) the surface biomarkers of cancer stem cells (CSCs) 
consist of CD44, CD71, CD90, CD133, CD271, ALDH, and ABCG2; (III) the balance of autophagy and apoptosis is another mechanism 
of radioresistance. Autophagy, as a conserved process that mediate the degradation, dysfunctional organelles and turnover of long-lived 
proteins, can limit the effect of radiotherapy through supporting metabolic mechanism in cellular stress times; (IV) epithelial-mesenchymal 
transition (EMT) is common in cancer progression and related to radioresistance.
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major histocompatibility complex class II in normoxic tumor 
tissues and antiangiogenic chemokines such as CXCL9 and 
CXCL10. M2 macrophages express low levels of major 
histocompatibility complex class II in hypoxic tumor 
tissues and proangiogenic chemokines such as CCL17, 
CCL22, and CCL24. Tumor-associated macrophages 
secrete a large number of growth factors such as PDGF, 
FGF family members, VEGF, and TGF-β, which play 
critical proangiogenic roles in esophageal SCC (32). 
Tumor-associated macrophages also release proteases 
and matrix proteins such as MMPs, cathepsins and serine 
proteases to regulate the composition of the ECM and to 
increase disruption of the basement membrane. Several 
anti-macrophage approaches, such as the use of a CCL5 
receptor antagonist (Met-CCL5), have been evaluated 
recently; this treatment could downregulate the numbers 
of tumor-infiltrating macrophages and significantly 
decreased the tumor volume after radiotherapy in a murine 
model of esophageal cancer (33). Zoledronic acid and 
liposomal clodronate reduce the invasion and metastasis 
of irradiated esophageal SCC through the depletion of 
tumor-infiltrating CD11b+ monocytes/macrophages that 
express MMP9.

Regulatory T cells (Tregs)

CD4+CD25+ Tregs account for approximately 5% of T 
cells and are recognizable by the expression of FoxP3, 
which is a transcription factor that is essential for cancer 
development and progression. Through their suppressive 
function, Tregs play a critical role in protecting the body 
against autoimmunity and tissue damage (34,35). Tregs may 
either be natural Tregs (nTregs) or inducible Tregs (iTregs). 
nTregs originate in the thymus and mediate suppressive 
functions through the perforin/granzyme or Fas/Fasl 
pathways, while inducible Tregs (iTregs) are induced 
outside the thymus after they are exposed to IL-2, TGF-β 
and IL-10. Tregs negatively regulate T cell immune 
responses in vivo and promote the invasion, proliferation 
and metastasis of esophageal cancer (36). Radiotherapy 
could lead to the formation of a chronic inflammatory 
microenvironment through modulation of the host 
immune system, which increases the frequency of Tregs 
and results in radioresistance and recurrence of malignant 
tumors. Daclizumab (an anti-CD25 Ab) and the tyrosine 
kinase inhibitor sunitinib have been used to increase anti-
tumor immunity through a reduction in the frequency of 
Tregs.

Other stromal cells and molecules

Dendritic cells, as potent antigen presenting cells (APCs), 
present antigens to antigen-specific T cells and mediate the 
innate and adaptive immune responses (37). Dendritic cells 
are derived from bone marrow hematopoietic progenitor 
cells, but they mature within peripheral tissues. Dendritic 
cells play a dual role in the TAM such as in the mediation 
of potential anti-tumor immune responses, the activation 
of cytotoxic T lymphocytes (CTLs) and the blockade of 
anti-tumor immune responses. Exosomes are multivesicular 
bodies (MVBs) approximately 30-120 nm in diameter 
that are derived from luminal membranes; they include 
abundant bioactive molecules such as miRNA, mRNA, 
DNA, lipids and proteins (38). Exosomes participate in 
communication between cells and play a significant role 
in the balance between development and homeostasis 
in normal tissues and during oncogenesis. Jelonek et al. 
revealed that exosomes alter their proteins and miRNAs 
to exert a radioresistant effect (39). Boelens et al. found 
that exosomes derived from the coculture of stromal and 
breast cancer cells mediate chemoradioresistance through 
paracrine and juxtacrine signaling (32,40) (Figure 2).

Targeted therapy in combination with 
chemoradiotherapy

The ErbB family includes four tyrosine kinases: ErbB-1 
(EGFR), ErbB-2 (HER 2), ErbB-3 (HER 3), and ErbB-4 
(HER 4). EGFR is overexpressed in approximately 50-71%  
of SCC patients and in 9–55% of AC patients (41). EGFR 
overexpression is associated with a poor prognosis and poor 
overall survival and is activated by many ligands including 
EGF, TGF-α and epiregulin. Anti-EGFR monoclonal 
antibodies (cetuximab and panitumumab) and tyrosine 
kinase inhibitors (gefitinib and erlotinib) have achieved a 
significant benefit in clinical trials (32,40,42,43). Safran 
et al. treated 57 patients with esophageal cancer with 
cetuximab, paclitaxel and RT at a dose of 50.4 Gy/cfx and 
found that 70% of the patients had a complete clinical 
response after chemoradiotherapy (44). HER2 is usually 
identified on the cell surface by immunohistochemistry 
( IHC) or  in  the  nuc leus  by  f luorescence  in  s i tu 
hybridization (FISH) (45). Overexpression of HER2 
is common in patients with SCC and in those with AC 
(approximately 23% and 22%, respectively) and is associated 
with a poor survival rate (46). The anti-HER2 monoclonal 
antibody trastuzumab has been demonstrated to improve 
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Figure 2 Tumor associated microenvironment (TAM) and radioresistance. Hypoxia can improve the expression of VEGF and HIF-1 and 
induce radioresistance. Cancer-associated fibroblasts (CAF) play a critical role in the development and progression of esophageal cancer, 
promoting cancer proliferation, invasion, metastasis, angiogenesis. Tumor-associated macrophages are divided into M1 subpopulation that is 
activated by Toll-like receptor ligands and interferon-γ, which plays a role in antitumor immunity and M2 subpopulations that is activated by 
interleukin 4 (IL-4) or interleukin 13 (IL-13), which suppresses antitumor immunity. Tregs, divided into nature Tregs (nTregs) and inducible 
Tregs (iTregs), play a critical role in protecting itself against autoimmunity and tissue damage through their suppressive function. Dendritic 
cells play a dual role in tumor-associated microenvironment such as mediating potential anti-tumor immune responses and activate the 
cytotoxic T lymphocytes (CTLs) or blockade anti-tumor immune responses. Exosomes secreted by stromal cells and esophageal cancer cells 
mediate radioresistant through paracrine and juxtacrine signaling.

the survival rate of patients with metastatic HER2-positive 
esophageal cancer, but the effect of the HER2 tyrosine 
kinase inhibitor lapatinib is still controversial. In a Phase 
III trial of 584 HER2-positive esophageal cancer patients, 
trastuzumab was given along with pacl i taxel  and 
radiation at a dose of 50.4 Gy/cfx. The median overall 

survival time was 14.8 vs. 11.1 months in the trastuzumab +  
chemoradiotherapy group and the chemoradiotherapy 
group, respectively.

VEGF is a critical regulator of both physiologic and 
pathologic angiogenesis. VEGF can induce endothelial cell 
mitogenesis, invasion and vascular permeability, and can 
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mediate tumor growth and metastasis. Overexpression of 
VEGF is associated with a poor survival rate and advanced 
cancer stage in 30–60% patients with esophageal cancer; 
VEGF overexpression also contributes to tumor recurrence 
and metastasis (47). VEGFR is a predictor of poor prognosis 
and is overexpressed in 30–50% of esophageal SCC cases. 
In a retrospective study of 117 esophageal cancer patients 
conducted by Shih et al., it was demonstrated that the mean 
number of metastatic lymph nodes was 5.6 vs. 3.0 in VEGF-
positive cases and VEGF-negative cases, respectively (48). 
The anti-VEGF monoclonal antibody bevacizumab and 
the VEGFR tyrosine kinase inhibitor sorafenib have been 
reported to increase the efficacy of chemoradiotherapy 
in esophageal cancer patients (49). Meluch et al. added 
bevacizumab, erlotinib, carboplatin and paclitaxel to RT 
at a dose of 45 Gy (cfx) and treated 62 patients with locally 
advanced esophageal cancer; the pCR rate was 30% (50). 

c-Met is a transmembrane receptor tyrosine kinase, and 
hepatocyte growth factor (HGF) is the only ligand that 
binds to this receptor. Aberrant activation of the HGF/
Met signaling pathway has been demonstrated to promote 
the progression and metastasis of esophageal cancer (51). 
Overexpression of c-Met is associated with an aggressive 
phenotype and a poor prognosis in patients with esophageal 
cancer. c-Met promotes motility, proliferation, metastasis 
and angiogenesis in esophageal SCC through the RAS-
MAPK and PI3K-Akt signaling pathways (52). c-Met 
inhibitors (tivantinib, crizotinib, foretinib) and an HGF 
inhibitor (rilotumumab) were reported to increase the 
efficacy of chemoradiotherapy in multiple clinical trials.

Gene expression profiling

Gene expression microarray is a novel high-throughput 
technology that has been widely used for the identification 
of the biological characteristics of malignant tumors such 
as esophageal cancer. Gene expression profile microarrays 
can analyze thousands of genes and can identify the relevant 
genes that are related to tumor prognosis (53). In particular, 
gene expression microarrays have achieved a benefit in 
terms of their ability to predict responses to neoadjuvant 
chemoradiotherapy. Maher et al. found that five biomarkers 
(EPB41L3, RTKN, STAT5B, NMES1 and RNPC1) could 
improve the accuracy in the prediction of the radioresponse 
of 13 patients with esophageal cancer through DNA 
microarrays, which were then validated by RT-PCR (54). 
Duong et al. analyzed a group of 46 esophageal cancer 
patients, which consisted of 21 SCC and 25 AC patients who 

received neoadjuvant CRT, and found that 32 genes could be 
used to predict radioresponse by DNA microarray (55). Guo 
et al. revealed that aberrant hypermethylation of RASSF2 is 
associated with a poor prognosis and that peripheral blood 
DNA could be used to predict the radioresponse of patients 
with esophageal cancer (56).

Single nucleotide polymorphisms (SNPs)

As the sequence of the human genome was revealed, we 
found that genetic variation is larger than previously 
thought and that the most common variations are SNPs. 
SNPs have been used to analyze cancer treatment outcome 
predictor (CTOP) genes and to judge therapeutic effects in 
esophageal cancer, as most SNPs are silent (57). Nucleotide 
excision repair genes such as ERCC1 and XRCC1 protect 
the genome against multiple DNA lesions caused by 
ionizing radiation. Wu et al. investigated variations 
in SNPs in 210 patients with esophageal cancer using 
pathway-based approaches and found that the variant allele 
R399Q in the XRCC1 gene is related to a poor response 
and could be a prognostic marker in clinical patients (58). 
Yu et al. found that the C118T SNP in the ERCC1 gene 
could predict response to neoadjuvant radiochemotherapy 
in 52 patients with esophageal SCC (59).

MicroRNAs

miRNAs are short noncoding RNA sequences 19–24 
nucleotides in length that can regulate gene expression 
through the inhibition of mRNA translation. It has been 
confirmed that miRNAs are present in tissues and body 
fluids, where they play a critical role in the progression and 
recurrence of cancers (60). Odenthal et al. analyzed 768 
miRNAs using pretherapeutic and post-therapeutic biopsies 
of 80 esophageal cancer patients and found that miR-192 
and miR-194 are significantly related to histopathologic 
response after neoadjuvant chemoradiotherapy (61). 
Zhou et al. compared miRNA expression in primary ESCCs 
and recurrent ESCCs after radiotherapy and found that 
overexpression of miRNA-381 is significantly associated with a 
decrease in tumor growth and an increase in the radiosensitivity 
of esophageal cell carcinoma patients (62). Li et al. studied 38 
patients with ESCC and 19 healthy individuals and found 
that high levels of plasma miRNA-16 and miRNA-21 are 
associated with a decrease in progression-free survival 
(P=0.031 and P=0.038 for miRNA-16 and miRNA-21, 
respectively) (63).
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Proteomics

Proteomics involves the determination of the function of 
genomic translation and the tumor phenotypes that regulate 
cancer behavior (64). Proteins are superior biomarkers than 
other molecules because they influence molecular pathways 
that are relevant to tumor progression and metastasis (65). 
Maher et al. studied 31 patients with esophageal cancer, 
16 of whom exhibited a poor response and 15 of whom 
exhibited a good response according to the Mandard tumor 
regression grade (TRG) classification system. They also 
observed that the serum complement factors C4a and C3a 
are higher in patients with a poor response and that they 
predict the response to chemoradiotherapy with sensitivities 
of 78.6% and 83.3%, respectively (66).

IHC 

IHC has an advantage in providing detailed morphological 
information in a large number of formalin-fixed paraffin-
embedded tissue samples and is used widely in the 
discovery of hypothesis-driven biomarkers. Smit et al. 
investigated esophageal cancer cells that contain a CD44+/
CD24− subpopulation, which exhibit higher sphere-
forming potential and a higher proliferation rate than the 
CD44+/CD24+ subpopulation. In a study of preneoadjuvant 
chemoradiotherapy, in which biopsy material from 27 
esophageal cancer patients was examined, the CD44+/
CD24 population was identified in 50% of patients with 
a poor response to chemoradiotherapy. In contrast, this 
subpopulation was not found in any of the patients who 
exhibited a complete response, which indicates that the 
CD44+/CD24− population can be a predictive biomarker 
in esophageal cancer patients in terms of their response to 
chemoradiotherapy (67).

Medical imaging

Imaging technologies have developed rapidly in recent 
years. Metabolic and functional imaging modalities 
such as FDG PET, functional MRI and Hypoxia PET 
have been used to evaluate the therapeutic effects of 
radiochemotherapy in patients with esophageal cancer. In 
their study of 31 patients with esophageal cancer, Klaassen 
et al. found that the hypoxia tracer (18F) HX4 demonstrated 
good repeatability and may be a potential way to measure 
treatment response (68). van Rossum et al. demonstrated 
that changes in the apparent diffusion coefficient (ADC) 

could predict pathologic response to radiotherapy in 20 
patients with esophageal cancer through diffusion-weighted 
magnetic resonance (69).
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