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Introduction

Coronavirus disease 2019 (COVID-19) which could cause 
serious respiratory illness has swept the world in a global 
pandemic. The etiological agent has been identified as a 
novel coronavirus, now known as severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), which is most 
likely originated from cross-species transmission of zoonotic 
coronaviruses (1,2). SARS-CoV-2 is highly contagious and 
COVID-19 represents a spectrum of clinical manifestations. 
Since the identification of SARS-CoV-2, COVID-19 
has triggered enormous human casualties and economic 
loss. To provide a comprehensive summary to researchers 
and potential readers, we summarized and discussed the 

epidemic situation, genomic characteristics, transmission, 
pathogenicity, animal model, clinical treatment and vaccine 
to combat the pandemic novel coronavirus.

We present the following article in accordance with the 
Narrative Review reporting checklist (available at http://
dx.doi.org/10.21037/jtd-20-2084).

Epidemic situation

In the winter of 2019, COVID-19 was firstly identified in 
China. The SARS-CoV-2 infection was firstly reported 
to World health Organization (WHO) on 31 December 
2019 (3). More than 36 million laboratory-confirmed cases 
have been reported globally as of middle October 2020, 
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with more than 1 million deaths (4). The pandemic has 
touched nearly every corner in the world, more than 200 
countries and territories were affected by SARS-CoV-2. 
Multiple public health measures were taken to prevent the 
import and spread of SARS-CoV-2 in different countries, 
including widespread mask usage, temperature measuring, 
social distancing and self-isolation of mild patients, etc. 
(5,6). Due to the appropriate prevention and control 
measures in the early outbreak, currently the new cases 
in China are mainly imported cases. While America and 
India have become the epicenters of COVID-19 pandemic, 
thousands of new cases are now being reported every day. 
As SARS-CoV-2 is a new coronavirus, most of the human 
population have no pre-existing immunity and are generally 
susceptible to the infection (7-10). According to multiple 
studies of laboratory-confirmed cases from China (11-13), 
fever, fatigue and cough, to a less extent, diarrhea are the 
most common symptoms. The symptoms of the pediatric 
infection cases are less severe and nonspecific in contrast to 
adult patients. Most patients have a good prognosis except 
the elderly and those with chronic co-morbidities (14,15). 
Some patients may not develop the typical manifestations 
(or very mild which were often neglected by patients) as 
described above (16), so called asymptomatic patients, 
which makes it more difficult to prevent and control the 
COVID-19 disease. 

Genomic characteristics and origin

All CoVs share similarities in genome organization and mainly 
encode four structural proteins including spike (S), envelope 
(E), membrane (M) and nucleocapsid (N) proteins (17).  
The GC content of SARS-CoV-2 genome is about 38%, 
with a genome of around 29.8 kb, which also encodes at least 

six putative accessary proteins, including ORF3a, ORF6, 
ORF7a, ORF7b, ORF8 and ORF10 that are interspersed 
between the structural genes according to the reference 
strain (NCBI accession number: NC_045512.2) of SARS-
CoV-2 (Figure 1), though the exact number of functional 
proteins remains to be established. SARS-CoV-2 showed 
high nucleotide homology (96.2%) with BatCoV RaTG13 
(GenBank: MN996532.1) (18), a bat coronavirus discovered 
from Rhinolophus affinis in Yunnan Province, China. 
Genome sequence homology of SARS-CoV-2 with SARS-
CoV, and Middle East respiratory syndrome coronavirus 
(MERS-CoV) was 76.71% and 33.84%, respectively. Until 
now more than ten thousand SARS-CoV-2 sequences have 
been submitted to GISAID (https://www.gisaid.org/). All 
strains of SARS-CoV-2 genomes are highly conserved and 
distinguished from other betacoronavirus (Figure 2). SARS-
CoV-2 has low genetic diversity due to the presence of 
proofreading mechanisms. However, some biased mutations 
may occur and result in the dominant variant due to natural 
selection, like D614G (A23403G) on spike protein (19-21).  
Although geographic origin of A23403G cannot be 
determined, the frequency of this mutation has increased to 
74% of all the published sequences, and D614G has been 
proved to relate to increasing infectivity of SARS-CoV-2 
(22,23). Although D614G decreases the affinity for ACE2 
by increasing the rate of dissociation, further research 
revealed that D614G would change the conformation of the 
S1 domain to increase the probability of existence of open 
conformations. However, whether COVID-19 severity 
related to D614G variant has not yet been detected. Most 
importantly, D614G variants showed equally sensitive with 
D614 strains to binding SARS-CoV-2 RBD neutralizing 
monoclonal antibodies (23). As the pandemic continues, 
more D614G-like mutations would be found, it is necessary 
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Figure 1 Genetic organization of SARS-CoV-2. SARS-CoV-2 encoded four structural proteins (S, E, M and N) and six accessory proteins 
(ORF3a, ORF6, ORF7a, ORF7b, ORF8 and ORF10). SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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Figure 2 Phylogenetic analysis of SARS-CoV-2 based on the complete genomes. Five SARS-CoV-2 representative strains (indicated in red), 
all SARS-CoV strains (indicated in blue) and other SARS-like strains were analyzed using Neighbor-Joining method with 1,000 bootstrap 
replicates in MEGA 5.0 program, number as the nodes represent bootstrap support. SARS-CoV-2, severe acute respiratory syndrome 
coronavirus 2.
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Figure 3 Transmission routes of SARS-CoV-2 among human and animals. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

to develop SARS-CoV-2 infectious clone (ic) of single-
point mutant strains to study the effect of mutant on 
pathogenicity and transmission.

SARS-CoV-2 is believed originated from wild animals (18).  
It is crucial to discover COVID-19 related animal origins, 
which will benefit infection prevention and control. A bat 
coronavirus, RaTG13 has a high nucleotide homology to 
SARS-CoV-2 (18). Bats are natural reservoir for a number 
of SARS-related coronaviruses (SARSr-CoVs), Both SARS-
CoV and MERS-CoV are zoonotic pathogens which 
crossed the species barriers to infect humans (1). In detail, 
SARS-CoV originated from bat (24) and civet cats was 
the intermediate animals (25,26). MERS-CoV infection 
in humans was mainly transmitted through close contact 
with infected dromedary camels (27), while the most 
recent ancestor analysis speculated that MERS-CoV might 
have jumped from bats to camels (28). Whether SARS-
CoV-2 also originated from bats needs more evidences 
and further investigation. Another critical question is to 
identify intermediate hosts that directly transmit SARS-
CoV-2 to human. Some of the reported cases identified 
in December 2019 in Wuhan city were related to Hua-
nan seafood market, which had housed a number of wild 
animals (29). Sellers, consumers, visitors or wildlife housed 
in the market before the outbreak might be related to 
SARS-CoV-2 infection and transmission. It is necessary to 
determine the original source, the transportation route and 
the destination of the wild animals in the market. However, 
some COVID-19 patients had no travel history to the 
seafood market, or even Wuhan City (11,25). According 

to some most recent reports, the first COVID-19 related 
cases in France and America might be earlier than 
previously believed (30). Multiple animal species worldwide 
were detected to be positive for SARS-CoV-2 RNA by 
quantitative PCR recently, including cat (31), dog (32), 
pangolin (33), tiger and lions (34), etc., indicating many 
animals can be infected with SARS-CoV-2 and have the 
potential to transmit the virus to humans (35) (Figure 3).  
However, most of the scientists agree that there is no 
evidence showing pets spread SARS-CoV-2 to other animal, 
including human. Global wildlife monitoring needs to be 
stepped up to reduce the risk of future pandemics. Besides, 
more important information about potential zoonotic 
transmission of SARS-CoV-2 infection can be acquired by 
conducting comparative analysis of ACE2 sequences from 
different species and predicting their ability of binding 
SARS-CoV-2 spike protein (36). Comparative and structural 
analysis of ACE2 in vertebrates showed that a large number 
of mammals that can potentially be infected by SARS-
CoV-2 via their ACE2 proteins, which represents an 
opportunity for spillover of SARS-CoV-2 from humans to 
other susceptible animals (36). Further studies are required 
to identify the exact natural reservoir and intermediary 
hosts responsible for the COVID-19 pandemic worldwide.

Transmission and pathogenicity

COVID-19 had been announced as a worldwide pandemic 
by WHO on 11 March 2020, but the transmission 
mechanism of SARS-CoV-2 has yet to be determined. 
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Comparison the transmission routes of SARS-CoV-2 
with SARS-CoV and MERS-CoV may provide useful 
information against the novel CoV. MERS-CoV infection 
is mainly due to the repeated introductions of MERS-CoV 
from dromedary camels to human, resulting in limited 
human to human transmission (37,38). SARS-CoV is 
predominantly transmitted through close person-to-person 
contact, via respiratory droplets (39). As to SARS-CoV-2, 
nucleic acid shedding pattern of patients infected with 
SARS-CoV-2 appears different from that had been seen in 
patients infected with SARS-CoV (40). Higher viral loads 
were detected soon after symptom onset, and more robust 
SARS-CoV-2 replication was found in upper respiratory 
tract. Successful isolation of live virus from nasal and throats 
swabs is an obvious difference between COVID-19 and 
SARS (41). Such isolations were rarely successful for SARS-
CoV (42,43). In addition, SARS-CoV-2 is stable for several 
hours to days in aerosols and on surfaces of different kind 
of materials, suggesting that people may acquire the virus 
through the air and after touching contaminated objects 
(44-47). Current epidemiological data indicate that human-
to-human transmission of COVID-19 occurs in public 
and family clusters (48-50). Transmission between infected 
and healthy individuals can occur through close contact 
or respiratory droplets, so continuous monitoring of close 
contacts with confirmed COVID-19 patients is essential. 
Besides, live viruses can be isolated from specimens 
collected outside respiratory tract, such as feces (51)  
and urine samples (52), which suggested that the virus 
may be transmitted by other routes in addition to close 
contact (53,54) (Figure 3). Similar transmission route was 
also observed in the Amoy Gardens outbreak of SARS in  
2003 (55). SARS-CoV spread to other residents lived in 
different apartments through the sewage-disposal system, 
person-to-person contact, and the use of communal 
facilities such as elevators and staircases.

As for the pathogenicity, SARS-CoV-2, SARS-CoV and 
MERS-CoV all cause severe pneumonia with different 
mortality rates (56,57). By the end of the SARS epidemic, 
more than 8,096 people had been infected, leading to 774 
deaths (9.56%) (58). As for MERS outbreak, a total of 
2,562 lab-confirmed cases including 881 (mortality rate 
34.4%) has been notified by WHO as of October 2020 (56). 
However, epidemiological studies that relied on serological 
testing indicated the underestimate of the prevalence of the 
MERS-CoV infection (59). Meanwhile, T cell response 
analysis also indicated that zoonotic infection of dromedary-
exposed individuals is taking place in Nigeria and the extent 

of MERS-CoV infections in Africa is underestimated (60). 
Mortality rate of COVID-19 was estimated to be about 
3.4% as of March by WHO (61). However, the existence 
of asymptomatic and subclinical SARS-CoV-2 infections 
makes it difficult to define the actual mortality rate 
from COVID-19 and the reported mortality rate is very 
different across the globe. For instance, based on actual 
case and death numbers in New York City, the fatality 
rate is about 1.4% (62). Human angiotensin converting 
enzyme II (hACE2), the cell entry receptor of SARS-CoV, 
was also proved to be the cell entry receptor for SARS-
CoV-2. SARS-CoV-2 spike protein showed a comparable 
or higher affinity to hACE2, which is consistent with the 
phenomenon that SARS-CoV-2 has stronger transmissibility 
(63,64). Human single-cell RNA sequencing (scRNA-seq) 
datasets showed that organs, including lung, liver, stomach, 
ileum, kidney and colon have high ACE2 expression, 
indicating these organs are at potential risk to SARS-CoV-2  
infection (65). Like SARS-CoV and MERS-CoV, the cause 
of severe infection in COVID-19 patients is dysregulated 
inflammatory response, also called cytokine storm, 
which leads to acute respiratory distress syndrome and 
multiple organ failure (14). Pulmonary edema with hyaline 
membrane formation, desquamation of pneumocytes and 
hyaline membrane formation were found from autopsy 
findings of a COVID-19 patient, which confirmed the 
existence of acute respiratory distress syndrome (66). The 
positive PCR result of feces and blood sample supported the 
notion that SARS-CoV-2 infection could be systemic (53). 
Severe patients may develop dyspnea and hypoxemia one 
week after the onset of the disease, and some severe cases 
rapidly progressed to acute respiratory distress syndrome, 
septic shock, refractory metabolic acidosis, coagulation 
dysfunction and multi-organ failure (13). Compared with 
mild patients, patients with severe COVID-19 tended 
to have a higher viral load and a longer virus-shedding  
period (67). Severe and critical cases had higher IgM levels 
than mild cases, whereas the IgG level in critical cases was 
lower than those in both mild and severe cases (68). Besides, 
numerous asymptomatic patients were also detected (69,70). 
These patients were positive for viral RNA detection 
without any typical COVID-19 manifestations, which may 
be responsible for the complicated transmission routes of 
SARS-CoV-2.

Lab diagnostic

As to lab diagnostic, the shared genome by China CDC 
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enables other countries to rapidly diagnose patients by real-
time RT-PCR (71-73), WHO also issued guidance on how 
to detect and treat patients infected with SARS-CoV-2 (74). 
SARS-CoV-2 virus RNA was mainly detected in respiratory 
samples, including throat swabs, nasal swabs and sputum. 
Viral nucleic acid test can remain positive for a long time 
in feces samples from some severely ill patients. Moreover, 
severe patients show a prolonged viral shedding than mild 
patients (75). Multiple rapidly IgA, IgG and IgM antibody 
detection methods were also established, including lateral flow 
immunoassay (76), chemiluminescence immunoassay (77) and 
luciferase immunoprecipitation assay systems (LIPS) (78). 
Early detection of SARS-CoV-2 antibodies in COVID-19 
patients performed as a serologic marker of infection (79) 
and anti-SARS-CoV-2-NP IgG level correlated with virus 
neutralization titer (80) which could guide and improve 
treatments. Mild patients have lower IgM responses 
against SARS-CoV-2, which indicated lower viral loads, 
so using IgM detection for sole diagnosis of COVID-19 
in patients with mild disease might result in false negative. 
Meanwhile, viral specific IgG in sputum and urine from 
severe patients presented positive, so detection of antibody 
responses in urine and other body fluids could be used to 
as a marker to determine disease severity (75). CRISPR-
Cas12-based nucleotide acid detection assay provides a 
visual and faster alternative method than real-time RT-PCR 
assay in clinical departments (81). Detectable SARS-CoV-2 
viral RNA in blood is a strong indicator for the progress 
of severe COVID-19 (82). The ongoing research advances 
in complementary technologies paved the way to more 
reliable, accurate and high throughput detection results.

Animal model

Animal models mimicking the clinical symptoms and 
pathological changes of human SARS-CoV-2 infection were 
essential for antiviral drug screening, vaccine development 
and viral pathogenesis research. Animal models used for 
SARS-CoV and MERS-CoV infection are variable. As for 
MERS, several generations of mouse and other animal 
models were developed, including mice transduced with 
adenoviral vectors expressing hDPP4 (human dipeptidyl 
peptidase 4, the receptor of MERS-CoV spike protein), 
hDPP4 transgenic mice (83), hDPP4 knockin mice (84) 
and nonhuman primate model of common marmoset (85) 
and rhesus macaque (86). Ad-hDPP4 transduction system 
is useful for the rapid generation of a murine model in 
2–3 weeks. MERS-CoV replicates successfully in mouse 

lungs and causes modest lung damage. However, the level 
of hDPP4 expression in different epithelial cells is hard 
to control (87). hACE2 and hDPP4 transgenic mouse 
model had been developed for SARS-CoV and MERS-
CoV infections. However, the systemic expression of 
hACE2 or hDPP4 may lead to the atypical symptoms 
and brain infections of SARS-CoV and MERS-CoV 
(83,84). Human receptor hDPP4 knockin mouse model 
with mouse adapted virus is the optimal animal model for 
MERS-CoV (84), although it needs long period of time 
to breed and backcross these mice. SARS-CoV-2 fails to 
invade and replicate in traditional mouse model due to the 
structural differences in mouse ACE2 (mACE2) compared 
with human ACE2 (hACE2). Several strategies have been 
developed to overcome this receptor incompatibility, 
like generating transgenic mice bearing hACE2 receptor  
(88-90), developing hACE2 mouse model transduced 
with adenovirus 5 (Ad5), adeno-associated virus (AAV), or 
Venezuelan equine encephalitis replicon particles (VRP) 
expressing hACE2 (91-93), and developing mouse adapted 
SARS-CoV-2 strain by serial passages in the respiratory 
tract of mice (94,95). Except for the mouse models 
mentioned above, others animal models of COVID-19 
are still under development, including ferrets (96), Syrian 
hamsters (97), and macaques (98-100). Multiple animal 
models are urgently needed to reproduce the clinical disease 
and pathological changes observed in COVID-19 patients, 
as well as to provide useful tools for studying SARS-CoV-2 
infection, transmission, and screening antiviral drug and 
developing vaccines.

Clinical treatment and vaccine

No licensed antiviral drugs for COVID-19 treatment are 
currently available. Repurposed drugs with anti-SARS-
CoV-2 potential are urgently needed. Some drugs like 
chloroquine (101), arbidol (102), remdesivir, traditional 
Chinese medicine (103) which once were used for treatment 
against malaria, Influenza virus or Ebola virus, are required 
to be validated in clinical trials (Table 1). Convalescent 
plasma from patients recovered from COVID-19 could also 
be useful for emergency treatment of severe and critically 
ill patients (104,105). Further, human monoclonal antibody 
isolated from memory B cells of COVID-19 convalescent 
patients would be another potential treatment, which were 
developed for MERS (106) and influenza (107) patients. 
Several SARS-CoV-2 neutralizing antibodies were recently 
generated, although validations in animal models and in 
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clinical trials were still needed to ensure the safety and 
efficacy of these medicines and to avoid adverse effect in 
humans (108,109) (Table 1).

To fast respond to the COVID-19 pandemic, a safe 
and effective vaccine is urgently needed. According to 
the landscape of COVID-19 candidate vaccines prepared 

by WHO, there are more than 100 candidate vaccines 
(110,111) under development using various platforms 
including: nucleic acid (DNA, RNA), protein subunit, viral-
vectored, live attenuated and inactivated vaccines some of 
which has initiated clinical trials. However, different vaccine 
strategies have certain advantages and disadvantages, it 

Table 1 Treatments for COVID-19: drugs being tested against SARS-CoV-2

No. Drug or treatment Target Ref

1 Remdesivir Antiviral drug Remdesivir and chloroquine effectively inhibit the recently 
emerged novel coronavirus (2019-nCoV) in vitro

2 Chloroquine and 
hydroxychloroquine

Antiviral drug Hydroxychloroquine and azithromycin as a treatment of 
COVID-19: results of an openlabel non-randomized clinical 
trial 

3 Passive transfer of convalescent 
immune Plasma

Passive immunity Treatment of 5 Critically Ill Patients With COVID-19 With 
Convalescent Plasma

4 Cross-reacticity neutralizing 
antibody

nAb binding glycan-containing 
epitope

Structural and functional analysis of a potent sarbecovirus 
neutralizing antibody 

5 Neutralizing anibotdy target RBD nAb binding RBD Potent human neutralizing antibodies elicited by SARS-
CoV-2 infection

6 Polyclonal Antibody Therapy libraries of antibodies GigaGen Initiates Development of Recombinant Polyclonal 
Antibody Therapy for COVID-19

7 Lianhuaqingwen Traditional Chinese medicine Lianhuaqingwen exerts anti-viral and anti-inflammatory 
activity against novel coronavirus (SARS-CoV-2)

8 Favipiravir or Avigan Anti-influenza drugs https://www.livescience.com/flu-drug-could-treat-
coronavirus.html

9  EIDD-2801 A broad spectrum oral antiviral An orally bioavailable broad-spectrum antiviral inhibits 
SARS-CoV-2 in human airway epithelial cell cultures and 
multiple coronaviruses in mice

10 Kaletra, a combination of lopinavir 
and ritonavir

An HIV drug combination A Trial of Lopinavir–Ritonavir in Adults Hospitalized with 
Severe Covid-19

11 Actemra, or tocilizumab An immunosuppressant and an 
arthritis drug

Roche initiates Phase III clinical trial of Actemra/RoActemra 
in hospitalised patients with severe COVID-19 pneumonia

12 Losartan A blood pressure drug Two generic drugs being tested in U.S. in race to find 
coronavirus treatments

13 Sarilumab IL-6 receptor antagonist https://www.drugs.com/history/kevzara.html

14 Ivermectin An anti-parasitic drug Lab experiments show anti-parasitic drug, Ivermectin, 
eliminates SARS-CoV-2 in cells in 48 hours

15 Fingolimod Used to treat relapsing multiple 
sclerosis

https://clinicaltrials.gov/ct2/show/NCT04280588

16 Methylprednisolone Glucocorticoid https://clinicaltrials.gov/ct2/show/NCT04273321

17 Leronlimab CCR5 antagonist https://clinicaltrials.gov/ct2/show/NCT04273321

18 Bevacizumab VEGF inhibitor https://clinicaltrials.gov/ct2/show/NCT04275414

COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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is necessary to evaluate the quality, safety and efficacy 
of vaccines. Researchers from China reported the initial 
findings of the first clinical trial for a potential vaccine 
candidate against SARS-CoV-2 (112). The Ad5 vectored 
COVID-19 vaccine expressing the spike glycoprotein was 
tolerable, immunogenic and could induce virus specific 
humoral and T-cell response after immunization. Multiple 
inactivated vaccines also showed good performance in 
animal and human studies (98,113). Significantly, side 
effect may be induced after immunization; accurate risk 
assessment plays a key role in vaccination. Recently, trials 
of a COVID-19 vaccine being developed by AstraZeneca 
and Oxford University will resume after being paused due 
to a reported side effect in a patient in the UK. In addition, 
determining immune correlates of protection for SARS-
CoV-2 is also critical for guiding vaccine development, 
including B cell response and T cell response, which were 
both important in the control of coronavirus infections. 
However, the longitudinal study of the protective effect 
of different vaccines, as well as the potential ADE 
effect induced by vaccination required further studies. 
Neutralizing Ab response after SARS-CoV-2 infection 
is typical of an acute viral infection with declining nAb 
titres observed following an initial peak (114), a similar 
phenomenon of nAb declining was also observed in SARS 
infection, IgG titre reached a peak on day 60, and remained 
high until day 180 from when it declined gradually until 
day 720 (115). Determining the longevity of protective 
immunity is a key problem. At last, most of CoVs were 
likely originated from cross-species transmission of zoonotic 
coronaviruses; the concept of immunizing wild animal 
reservoirs for the prevention of disease in humans is more 
challenging and has received limited attention.

Summary and outlook

The outbreak of COVID-19 remains a significant public 
threat. More studies are needed to respond to the challenge. 
Continuous and vigilance surveillance for SARS-CoV-2 is 
crucial for epidemic control. Several questions needed to be 
addressed are listed below.

(I)	 Original source and intermediary hosts of SARS-
CoV-2 is still unknown. Intensive investigations to 
identify possible animal reservoir are needed.

(II)	 There is an urgent need to develop standard 
guidelines to treat SARS-CoV-2 infected patients.

(III)	 Developing effective and safe vaccines and 
therapeutics are urgently needed to prevent human 

infection by SARS-CoV-2.
(IV)	 Establishment of effective animal model is 

essential, which could address a variety of scientific 
questions, including pathogenesis and development 
of vaccines and therapeutics.

(V)	 The understanding of cross-reactivity between 
SARS-CoV-2 and the other human coronaviruses 
and the role of pre-existing cross immunity in 
COVID-19 patients will be essential for patients’ 
treatment and vaccine design.

Our understanding of COVID-19 is still limited. Many 
research gaps of SARS-CoV-2 remain to be addressed. 
The integrated surveillance, response systems and research 
will facilitate the elimination of the infectious disease. 
Comprehensive understanding of SARS-CoV-2 could allay 
public fears and benefit pandemic prevention and control.
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