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Abstract: Valvular heart disease (VHD) is a chronic progressive condition with an increasing prevalence 
in the Western world due to aging populations. VHD is often diagnosed at a late stage when patients 
are symptomatic and the outcomes of therapy, including valve replacement, may be sub-optimal due the 
development of secondary complications, including left ventricular (LV) dysfunction. The clinical application 
of artificial intelligence (AI), including machine learning (ML), has promise in supporting not only early 
and more timely diagnosis, but also hastening patient referral and ensuring optimal treatment of VHD. As 
physician auscultation lacks accuracy in diagnosis of significant VHD, computer-aided auscultation (CAA) 
with the help of a commercially available digital stethoscopes improves the detection and classification of 
heart murmurs. Although used little in current clinical practice, CAA can screen large populations at low 
cost with high accuracy for VHD and faciliate appropriate patient referral. Echocardiography remains the 
next step in assessment and planning management and AI is delivering major changes in speeding training, 
improving image quality by pattern recognition and image sorting, as well as automated measurement of 
multiple variables, thereby improving accuracy. Furthermore, AI then has the potential to hasten patient 
disposal, by automated alerts for red-flag findings, as well as decision support in dealing with results. In 
management, there is great potential in ML-enabled tools to support comprehensive disease monitoring and 
individualized treatment decisions. Using data from multiple sources, including demographic and clinical risk 
data to image variables and electronic reports from electronic medical records, specific patient phenotypes 
may be identified that are associated with greater risk or modeled to the estimate trajectory of VHD 
progression. Finally, AI algorithms are of proven value in planning intervention, facilitating transcatheter 
valve replacement by automated measurements of anatomical dimensions derived from imaging data to 
improve valve selection, valve size and method of delivery.

Keywords: Valvular heart disease (VHD); artificial intelligence (AI); auscultation

Submitted May 04, 2020. Accepted for publication Nov 05, 2020.

doi: 10.21037/jtd-20-1837

View this article at: http://dx.doi.org/10.21037/jtd-20-1837

404

https://crossmark.crossref.org/dialog/?doi=10.21037/jtd-20-1837


397Journal of Thoracic Disease, Vol 13, No 1 January 2021

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2021;13(1):396-404 | http://dx.doi.org/10.21037/jtd-20-1837

Introduction

Valvular heart disease (VHD) involves disruption of the 
anatomic integrity of one or more heart valves causing 
valvular stenosis, valvular regurgitation or a combination 
of the two. VHD is usually considered either as primary, 
in which there are inherited or acquired abnormalities of 
the valve apparatus itself (for example bicuspid aortic valve 
or calcific aortic stenosis, respectively), or secondary, in 
which case valve function fails either due to myocardial 
dysfunction (heart failure) with abnormal mechanical stress 
and distortion of the valvular/subvalvular apparatus (mitral 
or tricuspid regurgitation) or due to aortic root disease and 
dilation (aortic regurgitation) (1). In the Western world, 
degenerative aortic stenosis and mitral regurgitation are the 
most common forms of VHD, with increasing prevalence 
as the population ages (2-4). The financial burden to health 
systems is huge, not only in terms of the cost of monitoring 
and treatment where feasible but also the slow progression 
to dependence of those patients exposed to the chronic 
onset of VHD.

In contrast to natural intelligence displayed by 
humans, artificial intelligence (AI) describes intelligence 
demonstrated by any device that perceives its environment 
and takes actions thereby mimicking human cognitive 
functions, such as learning and problem solving. Machine 
learning (ML) is a subfield of AI, where a mathematical 
model is designed and trained to make predictions using a 
large dataset. Due to advances in algorithmic design and the 
increasing availability, amount and complexity of data (“big 
data”), the role of ML has grown in the healthcare sector 
to facilitate diagnosis and to recommend treatments based 
on risk-benefit analysis. This has advantages, not only in 
earlier diagnosis, improvement in reliability of testing, and 
reduction in human errors due to cognitive bias, but also by 
supporting patient engagement and speeding administration 
through automatization (5). A promising application of 
AI analytics in healthcare involves precision medicine for 
patients with chronic disease with variable progression rates 
and unpredictable events, e.g., diabetes, in order to optimize 
individual prognostication and treatment (6). Over the past 
decade, the use of ML has also grown in cardiovascular 
medicine to improve quality of care, cost-effectiveness 
and mortality in patients with heterogenous diseases, 
such as heart failure, cardiomyopathy, arterial/pulmonary 
hypertension and coronary artery disease (7). More recently, 
publications have focused on the application of AI in VHD 
for detecting mitral valve disease/regurgitation and tricuspid 

valve disease (8-10). This article provides insights into the 
application of AI analytics in the management of patients 
with VHD, with a particular focus on those patients with 
aortic stenosis (AS) (Figure 1). 

We present the following article in accordance with the 
Narrative Review reporting checklist (available at http://
dx.doi.org/10.21037/jtd-20-1837).

AI in VHD

Auscultation

VHD is most often a chronic progressive condition with 
an insidious onset that is clinically silent for many years 
before diagnosis, but then requires intervention which 
may be curative, although more often requires continued  
long-term monitoring (Figure 2) (11). Sclerosis of the 
aortic valve can be detected early in life, followed by 
progressive calcification and thickening at a variable 
pace, ultimately leading to clinical AS with characteristic 
hemodynamic alterations at which stage the patient may 
develop symptoms or present with heart failure (12). Data 
over many years has repeatedly shown that most patients 
are diagnosed at a late stage when symptomatic or suffering 
from complications, such as LV dysfunction (3). Factors 
contributing to late diagnosis of VHD include a low level of 
patient awareness, the underuse of cardiac auscultation, and 
a low skill-base for auscultation among both primary and 
secondary care physicians (13,14). Physician auscultation 
lacks both sensitivity (up to 43%) and specificity (69%) for 
diagnosing significant VHD even when the clinicians are 
experienced (15). Heart sounds are variable in frequency, 
intensity, timing, location and are affected by other noise 
signals from the chest and upper abdomen, so can be 
challenging to interpret. Digital stethoscopes improve the 
detection of murmurs by converting an acoustic sound to 
an electronic signal, which can be further amplified, filtered 
and digitalized (16). 

Development of computer-aided auscultation (CAA) 
algorithms has been limited by the availability of high-quality  
heart sound recordings, which are needed to train an 
accurate ML system. The vast majority of stethoscopes in 
use are analogue, so heart sounds are not generally recorded 
electronically as part of the patient record. Collection of heart 
sound recordings, therefore, requires specific research studies. 
Automated classification of heart sounds has previously been 
attempted by many research groups, though many of these 
earlier studies are flawed due to the use of small datasets, 
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Figure 2 Calcific aortic stenosis—a chronic progressive condition (11). (A) The histology of the early lesion is characterized by a 
subendothelial accumulation of oxidized low-density lipoprotein (LDL), production of angiotensin (Ang) II, and inflammation with 
T lymphocytes and macrophages. Disease progression occurs by several mechanisms, including local production of proteins, such as 
osteopontin, osteocalcin, and bone morphogenic protein 2 (BMP-2), which mediate tissue calcification; activation of inflammatory signaling 
pathways, including tumor necrosis factor α (TNF-α), tumor growth factor β (TGF-β), the complement system, C-reactive protein, and 
interleukin-1β; and changes in tissue matrix, including the accumulation of tenascin C, and up-regulation of matrix metalloproteinase 2  
and alkaline phosphatase activity. In addition, leaflet fibroblasts undergo phenotypic transformation into osteoblasts, regulated by the  
Wnt3-Lrp5-β catenin signaling pathway. Microscopic accumulations of extracellular calcification (Ca2+) are present early in the disease 
process, with progressive calcification as the disease progresses and areas of frank bone formation in end-stage disease. The corresponding 
changes in aortic-valve anatomy are viewed from the aortic side with the valve open in systole (B) and in Doppler aortic-jet velocity (C).
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unrealistically clean recordings, or lack of a separate test set 
for evaluation. The PhysioNet/Computing in Cardiology 
Challenge 2016 (17) attempted to address these issues by 
providing a large, varied database of 3,153 recordings, 
assembled from seven research groups. The challenge asked 
researchers to build an algorithm to classify single recordings 
as ‘abnormal’ or ‘normal', and then evaluated their designs on 
a withheld test set. The winner of the challenge achieved a 
sensitivity of 94% and a specificity of 78% (18). The growing 
size and quality of datasets has enabled encouraging CAA 
results, though reported results can vary widely depending 
on the make-up of the test dataset used. Using the John 
Hopkins Cardiac Auscultatory Recording Database (CARD), 
Thompson et al. conducted a virtual clinical trial of CSD 
Labs’ ‘eMurmur’ algorithm on 3,180 heart sounds from 603 
outpatients. Sensitivity, specificity, and accuracy for detection 
of pathologic conditions were 93% (CI: 90–95%), 81%  
(CI: 7–85%) and 88% (CI: 85–91%), respectively (19). 
However, data deemed to be ‘noisy’ or lacking an audible 
murmur was removed before testing, which will artificially 
improve the algorithm’s performance compared to real-life 
use. In another pilot trial conducted in a pediatric cardiology 
setting, phonocardiograms of 106 patients with either no 
murmur, innocent murmurs or pathological murmurs 
were analyzed with a computerized algorithm and accuracy 
in detection of murmurs was compared with interpreted 
echocardiograms as a gold standard. The test algorithm was 
able to detect murmurs with a sensitivity of 87%, specificity 
of 100%, a positive predictive value of 100% (negative 
predictive value 90%), and 94% accuracy (20). Improved 
sensitivity of CAA compared to physician auscultation to 
detect positive echocardiography findings was also confirmed 

in neonates (21). Furthermore, CAA appears to be a 
relevant decision support tool not only for the detection of 
pathological murmurs but also appropriate referral of patients 
for further evaluation as shown by Watrous et al. (22) (referral 
sensitivity of 93%, specificity 79%).

The application of AI-analytics has been the foundation 
for the development of commercially available, mobile 
AI-enabled stethoscopes (e.g., Stethee™, M3DICINE, 
Brisbane, AUS; StethoMe™, Poznan, and PL), as well 
as FDA-approved software applications that can be 
used with a smartphone or personal computer and a 
digital stethoscope for automated detection of heart  
murmurs (Table 1). Available technology enables automated 
heart rate detection based on an audiosignal, followed by 
heart sound segmentation (systole/diastole), and feature 
extraction with subsequent classification by using ML 
approaches to construct a classifier based on training data. 
There is considerable variation in autonomy of currently 
available analysis algorithms, with systems operating fully 
autonomously (eMurmur ID, Ottawa, CAN), or applications 
requiring user interaction and data interpretation (Zargis 
Cardioscan™, Princeton, USA; SensiCardiac™, Diacoustic 
Medical Devices, Stellenbosch, South Africa). 

Despite the commercial availability of decision support 
tools to facilitate the diagnosis of VHD with cardiac 
auscultation, the application of CAA in daily clinical 
practice appears to be limited and its utility has been mostly 
investigated in the pediatric setting. The results in pediatric 
populations may well be less reproducible than in adult 
populations in whom obesity and other co-morbidities, 
such as chronic lung disease, may interfere with acoustic 
quality. CAA has the potential to overcome many of the 

Table 1 AI in VHD: Auscultation

Advantages of AI stethoscopes Limitations of AI stethoscopes

More accurate than doctors using analogue stethoscopes Not 100% accurate. The sensitivity and specificity should be factored in 
healthcare decisions. Algorithm tend to be sensitive to the type of  
stethoscope and quality and range of data

Can lead to better screening and reduce over-referrals for echo Results are not always interpretable. The stethoscope will give a binary 
decision but not give the physical reasoning for it

Very quick and cheap compared to echocardiography Not a replacement for echocardiography. More expensive than analogue 
stethoscopes

Someone without medical training could use it AI-enabled stethoscopes still require sound measurements to be made 
that require careful placement of the stethoscope on the chest

Help with telemedicine and have consistent patient records for 
tracking and monitoring. Easy to share data with consultants

There could be data privacy issues if the recordings are stored on a 
server
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limitations to screening large populations, as it is likely 
to be significantly cheaper than using echocardiography, 
avoids the need for highly trained health professionals, 
and does not require specialized healthcare facilities. This 
makes it attractive not only in earlier and more accurate 
diagnosis of asymptomatic VHD in the Western world, 
such as degenerative AS, but also in early detection of 
rheumatic valve disease, which remains the most common 
acquired VHD in developing countries (23). A particularly 
promising area appears to be the primary care setting, 
where VHD screening with CAA could be combined with 
the use of commercially available, mobile (miniaturized) 
echocardiography devices for triage improvement and 
facilitation of patient referral (14). There is a need for larger 
studies, validating the utility of CAA in a clinical setting in 
order to support its application as decision making tool in 
daily clinical practice. 

Imaging

Echocardiography is central to every stage in the diagnosis, 
monitoring, and timing of intervention in all forms of 
VHD (24). Although widely available and relatively low 
cost, demand for cardiovascular imaging continues to grow 
exponentially and as a result, timely, unfettered access to 
echocardiography remains a problem in many healthcare 
systems. One of the major problems is the dependency of 
the technique on highly skilled operators to acquire images, 
interpret findings, and decide on subsequent management. 
There are several ways in which AI can improve practice in 
this area.

Automated measurements: ML is a technique by which 
AI can learn rules and identify patterns in features within 
datasets, which can range from pixel density, brightness, 
a vector of movement, or a measurement (25). Using a 
process such as segmentation, images or volumes can be 
broken down into multiple landmarks or anatomical points, 
such as the apex of the heart and the attachment of the 
aortic valve leaflets, so that over time these can be localized 
and tracked across frames. Segmentation and modelling 
can then be used in a number of ways, for example to 
automate measurements of 2D dimensions or of Doppler 
velocities, in such a way that multiple assessments can 
be made with greater reproducibility at a faster speed, 
thereby also improving efficiency (26). Accurate, serial 
analysis of chamber dimensions and velocities is central to 
management of a patient with VHD, as these are major 
triggers for intervention but segmentation and modelling 

can also be used to plan intervention, for example by 
producing anatomically detailed images of valves prior to 
minimally invasive surgery (27).

Image quality, training and analysis: The rapid development 
and low cost of hand-held echocardiography devices (Figure 3), 
combined with the widespread availability of broadband 
technology, has opened new opportunities for screening 
and community diagnosis. Although many hand-held  
machines offer only 2D imaging, in appropriately trained 
individuals, this is sufficient for accurate diagnosis of 
significant VHD (29). That appropriate level of training 
does not have to involve person-to-person contact, but 
can also be done at a distance with engaged but unskilled 
individuals with broadband support—teaching ‘on 
the job’ but at a distance (30). Once images have been 
acquired, communication of that data to experts directing 
management can accelerate appropriate intervention in 
VHD in rural and under-privileged communities (31). 
Deep learning algorithms offer the opportunity to remove 
some of the need for highly trained individuals to do the 
analysis, for example with automated analysis of chamber 
volumes and function (32). Fully automated interpretation 
of echocardiography is on the horizon, with accurate image 
identification and segmentation, leading to quantification 
of volumes and function equivalent to accredited 
echocardiographers (33). These deep learning algorithms 
currently may operate on mainframe echo machines but 
over time, offer opportunities to train (advising the trainee 
when an echo view is ‘correctly aligned’), analyse (automated 
analysis of LV chamber dimensions), and potentially 
combine data to advise on risk (taking data from the images, 
together with data packaged from age, gender, and patient 
identifier).

Result communication: Despite recognition of the 
importance of timely diagnosis and appropriate treatment 
of VHD, there continues to be substantial variation in 
the treatment rates of patients—in European tertiary care 
hospitals, a quarter of patients with severe AS are not 
referred appropriately for intervention (3). The implications 
of a missed or delayed diagnosis, or inappropriate treatment, 
are as significant in AS, however, as they are in many forms 
of cancer. This has led to calls for automated alerts from 
echocardiography, sent directly to the requesting physician 
or care provider, not only highlighting the diagnosis but 
also outlining standards for management (34). Such alerts 
do not have to be generated from within the report itself 
by the echocardiographer but there is now capability for 
automated e-mail alerts to be sent direct from the machine 
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on measurement when wi-fi enabled. Furthermore, there 
is evidence that such forms of facilitated data relay can 
improve timeliness of patient treatment (3,35).

Clustering of data for diagnosis and intervention

Cluster analysis is a ML technique that provides a process 
for the creation of homogeneous groups or phenotypes 
from hidden patterns in data. This can be a useful tool for 
connecting links between apparently unrelated clinical and 
imaging data from electronic medical records, for example 
in identifying particular patterns of ventricular remodelling 
that carries adverse prognosis in diabetic patients (36). This 
has potential in a number of ways in VHD, for example 
by selecting outpatients at particular risk of VHD, so as to 
reduce the numbers needed for screening, or by selecting 
out those at particular risk for progression. In AS for 
example, it is known that risk of progression increases 

with clinical factors including age, diabetes mellitus, 
and hypertension, as well as fall in estimated glomerular 
filtration rate, while risk of events increases with 12-lead  
electrocardiogram features, such as LV hypertrophy, 
biomarker elevation in N-terminal proB natriuretic peptide, 
and high sensitivity troponin, as well as imaging features 
including severity of calcification on computed tomography 
and presence of late gadolinium enhancement on 
cardiovascular magnetic resonance imaging. Interrogation 
of electronic medical records to identify those patients 
with clusters of clinical, biomarker, and imaging data will 
not only select individuals at high risk but may identify 
potentially new, unknown factors. Such tools do not have to 
be limited by cross-sectional analysis but modelling based 
on serial assessment has even greater potential to estimate 
trajectory of AS progression, for example by tracking 
changes in gradients over time, so that patient supervision 
and management can be individualized (37).

A B C D
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Figure 3 All-in-one handheld echocardiogram devices with electronic transducers (28). Vscan with dual probe (A) and Vscan Extend (B) 
(Image courtesy of GE Healthcare, Wauwatosa, WI). (C) Acuson P10, ©Siemens Healthineers 2017 (used with permission), Siemens 
Medical Solutions Inc, Malvern, PA. (D) Iviz. (E) 180 Plus. (F) iLook. (G) Nano-Maxx (D-G Images courtesy of FUJIFILM SonoSite Inc, 
Bothell, WA). (H) uSmart 3200T (Image courtesy of Terason Division, Teratech Corporation, Burlington, MA). (I) Sonimage P3 (used with 
permission), Konica Minolta Healthcare Americas, Inc, Wayne, NJ.
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Treatment planning

Aortic valve replacement by surgery or the transcatheter 
approach is the treatment of choice for patients with severe 
AS. As recommended by guidelines, the most appropriate 
treatment option should be determined by a multi-disciplinary 
heart team (MDT) and usually consider factors such as 
patient comorbidities, age, frailty, level of independence, 
anatomical conditions, peri-operative mortality risk but 
also patient preferences (24). Whereas valve type selection 
and sizing are mostly enabled by intra-operative in-situ 
probing in surgery, imaging (echocardiography/computed 
tomography [CT]) plays a key role in procedure planning for 
transcathether valve therapies. AI-enabled clinical decision 
support systems (CDSSs) have been shown to support 
procedure-planning by integrating relevant anatomical 
information from echocardiography/CT into algorithms 
that help to determine the appropriate valve size (or even 
valve type) for aortic or mitral valve interventions in a fast, 
accurate and reliable manner (38-41). Such algorithms could 
be a valuable resource for high volume implanting sites, as 
imaging analysis is usually time-consuming, performed as 
a manual task, and, therefore, associated with a significant 
inter-operator variability.
 

Conclusions

AI-enabled applications, such as CAA, cardiovascular 
imaging (echocardiography/CT), or cluster-analysis 
enhanced by ML algorithms have been developed and are 
being increasingly introduced into clinical practice. These 
applications have the potential to not only support timely 
diagnosis-making and patient referral, but also treatment 
planning of patients with VHD. While AI-enabled tools 
are mainly targeting VHD as an underdiagnosed and 
undertreated condition, their systematic introduction could 
lead to the identification of a large number of VHD patients 
at all clinical stages and therefore an increasing burden to 
health care systems.
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