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The role of clinical signs and spirometry in the diagnosis of 
obstructive airway diseases: a systematic analysis adapted to 
general practice settings 
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Background: In general practice (GP), the diagnosis of obstructive airway diseases much relies on 
diagnostic questions, in view of the limited availability of lung function. We systematically assessed the 
relative importance of such questions for diagnosing asthma and chronic obstructive pulmonary disease 
(COPD), either without or with information from spirometry. 
Methods: We used data obtained in a pulmonary practice to ensure the validity of diagnoses and 
assessments. Subjects with a diagnosis of COPD (n=260), or asthma (n=433), or other respiratory diseases 
(n=230), and subjects without respiratory diseases (n=364, controls) were included. The diagnostic questions 
comprised eight items, covering smoking history, self-attributed allergic rhinitis, dyspnea, cough, phlegm 
and wheeze. Optionally standard parameters of the flow-volume-curve were included. Decision trees for the 
diagnosis of COPD and asthma were constructed, moreover a probabilistic diagnostic network based on the 
results of path analyses describing the relationship between variables.
Results: In the decision trees, age, sex, current smoking, wheezing, dyspnea upon mild exertion,  
self-attributed allergic rhinitis, phlegm, forced expiratory volume in one second (FEV1), and expiratory flow 
rates were relevant, depending on the diagnostic comparison, while cough, dyspnea upon strong exertion and ex-
smoker status were not relevant. In contrast, the probabilistic network for the diagnosis of COPD and asthma 
versus controls incorporated all diagnostic questions, i.e., dyspnea upon mild or strong exertion, current smoking, 
ex-smoking, wheezing, cough and phlegm but from spirometry only FEV1. Depending on the individual pattern, 
the probability for COPD could raise from 25% to 81%, while the diagnostic gain for asthma was lower.
Conclusions: The study developed simple diagnostic algorithms for asthma and COPD that take into 
account the relative importance of clinical signs and history, as well as spirometric data if available. The 
diagnostic accuracy was especially high for COPD. These algorithms may be helpful as a starting point in 
the standardisation of diagnostic strategies in GP practices. 
Trial registration: The study is registered under DRKS00013935 at German Clinical Trials Register 
(DRKS, Date of registration 01/03/2018).
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Introduction

Chronic obstructive pulmonary disease (COPD) and 
asthma, are common disorders (1,2) that are often 
diagnosed and treated within general practitioner (GP) or 
family practice settings, in which the scope of diagnostic 
possibilities is limited compared to specialists. The aim to 
maximize diagnostic efficiency leads to the question, which 
information is essential, and which is secondary. Obstructive 
airway diseases are often diagnosed via clinical history and 
signs, as well as lung function data derived from spirometry 
in that seems to be available to some extent under GP 
conditions (3). In contrast, specialists’ recommendations 
for the diagnosis of obstructive airway diseases (1,2,4) may 
include functional information that is not generally available 
under GP conditions. This could lead to heterogeneous 
diagnostic approaches with non-optimal and non-
comparable results.

Thus, structured algorithms adapted to GP conditions 
could be helpful in raising the quality of diagnostic practice 
(4,5). An attractive option is to derive such algorithms 
directly from data and to quantify their performance under 
realistic conditions. This has been done previously by a 
number of investigators addressing the diagnosis of asthma 
or COPD or both [e.g., (6-9)]. Similar algorithms have been 
used for phenotyping and prognosis (10,11). These studies 
provided encouraging and interesting results but most of 
them did not pay attention to the limited scope of methods 
in the great majority of GP settings. The present study 
explicitly aimed to account for these limitations by using a 
minimal set of diagnostic variables. 

For this, we used a large data set recruited in a 
pulmonological practice (12-14), taking advantage of 
the specific expertise and procedures providing reliable 
diagnoses for reference. In the present study, we focused 
on questions related to clinical history and symptoms, 
either taken alone, or in combination with spirometry. For 
analysis, advanced statistical procedures such as decision 
trees (15) and Bayesian probabilistic networks (16) were 
used, with the final aim to arrive at transparent, easily 
conceivable diagnostic algorithms that may be simple 
enough to be applied in clinical practice.

Methods

Study population

The analysis was based on data from a diagnostic study 
on capnovolumetry performed in a pulmonary outpatient 

clinic in Augsburg, Germany, from February 2018 to April 
2018. This study had the aim to assess the diagnostic value 
of capnovolumetry in the detection of airway obstruction. 
These results have been published (12-14) and are not 
part of the present evaluation. Subjects were consecutively 
enrolled if the inclusion criteria of age ≥18 years and the 
ability to understand the German language were met. 
Out of 1,400 subjects recruited, only those with complete 
measurements and without bronchial provocation challenge 
or bronchodilator testing were included in order to avoid 
possible interferences with the diagnostic questions and 
spirometric results. This resulted in a final set of participants 
having either the diagnosis of COPD, or asthma, or 
other respiratory diseases (such as restrictive disorders, 
pneumonia or other infections, pleural diseases, lung tumor, 
bronchiectasis), or no respiratory disease (control). 

Diagnoses as taken from subjects’ files were based 
on all  previously obtained functional and clinical 
information including previous bronchial provocation 
and bronchodilator tests. In 114 subjects, an obstructive 
airway disease was newly diagnosed, but the questions of 
the present study were not explicitly used and the diagnosis 
was established by the physician independently. The study 
had been performed in accordance with the Declaration of 
Helsinki (as revised in 2013) and had been approved by the 
Ethical Committee of the Medical Faculty of the Technical 
University of Munich (522/17 S). All subjects gave their 
written, informed consent. The study is registered under 
DRKS00013935 at German Clinical Trials Register 
(DRKS), where its protocol can be accessed. Date of 
registration 01/03/2018.

Assessments

These included a clinical part (questions) and a functional 
part (spirometry). Spirometric measurements followed 
established criteria (17,18). The basic measure was forced 
expiratory volume in 1 s (FEV1), which is known to be 
most robust among lung function measures. Additionally, 
we evaluated forced vital capacity (FVC), the ratio 
FEV1/FVC, mean expiratory flow rates at 25%, 50% 
and 75% of vital capacity (MEF25, MEF50, MEF75), and 
maximal mid-expiratory flow rate (MMEF). In order to 
reveal the maximum information, we included all these 
measures, although the reliability of some of them that 
critically depend on the quality of spirometry might differ 
between GP and specialist conditions. To account for the 
dependence of lung function parameters on anthropometric 
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characteristics, z scores were used based on established 
reference values [Global Lung Function Initiative (GLI), 
European Community for Steel and Coal (ECSC)] (19,20).

Regarding clinical history, signs and symptoms, we used 
seven questions regarding dyspnea upon mild or strong 
exertion, cough, phlegm, wheezing in the last 12 months, 
and smoking status (current, ex-smoker) selected from 
a larger set of questions (14) on the basis that they were 
answered by all or nearly all subjects, resulting in a low 
percentage of missing data. In addition, the question for 
self-diagnosed allergic rhinitis was included, but not in all 
analyses due to the relatively high percentage of missing 
values. Thus, the maximum number of questions was eight. 

Statistical analysis

Median values and quartiles are given for description. 
To understand the structure of the data, binary logistic 
regression analyses were performed comparing COPD 
with control, asthma with control, and COPD with asthma. 
We only used these binary comparisons, as comparisons 
between three or more diagnostic groups resulted in 
complicated and non-robust models. The results of the 
logistic regression analyses are not presented in detail, as 
they only served for the pre-selection of relevant variables 
in the more advanced approaches.

Path analysis
Path analysis, a special case of structural equation 
modelling, is valuable for the understanding of networks of 
relationships (13,21-24), especially through its capability to 
describe direct and indirect relationships between variables. 
The goodness of fit was measured by the comparative 
fit index (CFI), with a required value of >0.95. We took 
this measure as primary criterion, as in large data sets the 
common χ2 statistics can be oversensitive. To account for 
the dependence on anthropometric characteristics and 
eliminate these as explicit items, all variables were adjusted 
for age, sex and BMI. Moreover, z-scores of lung function 
data were used based on the predicted values of the GLI (19).  
The model comprised data from asthma and COPD, 
whereby these two groups were treated as two layers of the 
same basic structure. This allowed to identify relationships 
that were significant in one of the two groups but not 
the other, while keeping all other relationships. The path 
analysis resulted in a statistically robust, consistent and 
physiological meaningful network that served as initial 
version of the Bayesian network (see below).

Classification and decision trees
The decision trees provided algorithms for diagnosis, 
in contrast to the path analysis. As we aimed at simple, 
intuitively understandable results, we computed single trees 
and did not follow the alternative approach of Random 
Forests (14), since an ensemble of trees cannot be simply 
visualized which was one of the aims of the present study. 
Separate trees were constructed for COPD vs. control, 
asthma vs. control, COPD vs. asthma, and COPD vs. 
asthma vs. control. Additionally, trees were obtained for the 
differentiation of asthma or COPD versus their respective 
complementary groups, comprising all participants not 
having either asthma or COPD, respectively. All anamnestic 
questions and all measures of spirometry (without pre-
defined cut-off values) were offered to the search algorithm, 
in addition age, sex and BMI. The final trees were those 
that were robust to tenfold cross-validation.

Bayesian probabilistic networks
Associations between clinical or functional variables 
and diagnoses can also be described by probabilistic 
networks as shown in previous studies [e.g., (25-27)]. 
These networks bear some similarity to path analysis 
models, but the relationships are formulated as conditional 
probabilities instead of regression coefficients (28). The 
results were depicted as network of nodes representing 
binary alternatives of diagnostic criteria, and one node 
comprising the three diagnoses COPD, asthma and control. 
We used only categorical variables to keep the networks 
understandable. Thus, FEV1, which turned out to be the 
only relevant, robust lung function measure in the network, 
was categorized according to its lower limit of normal (LLN, 
lower 5-percentile) (19). The basic structure was taken 
from the path analysis result, and additional dependencies 
were added to achieve an optimal fit, which was quantified 
via the Bayesian information criterion (BIC). To illustrate 
the diagnostic use, those values of relevant variables were 
identified that resulted in the maximum probability for each 
of the three diagnoses.

For path analysis, AMOS version 25 (IBM Corp., Armonk, 
NY, USA) and the generalized least squares estimation 
criterion were used. For decision trees, we employed the 
CHAID method as implemented in SPSS (15), including 
Bonferroni correction and 10-fold cross-validation. The 
Bayesian network was constructed with GeNIe Modeler 
(Version 2.5.R4, BayesFusion, LLC, Pittsburgh, USA). 
All other statistical analyses were performed with SPSS 
(Version 25, IBM Corp., Armonk, NY, USA), and the level of 
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significance was assumed at P<0.05.

Results

Study population

Overall, 1,287 subjects fulfilled the inclusion criteria 
(Figure 1). Among them, 433 subjects had a diagnosis of 
asthma, 260 of COPD (227 GOLD 1 to 4, 33 others) (2), 
230 of other respiratory diseases, and 364 subjects did not 
show a respiratory disease. There were 34 subjects with 
COPD and the comorbidity asthma, who were assigned to 
the COPD group, as this disease dominated the functional 
alterations. Subjects’ characteristics stratified according 
to diagnostic groups are shown in Table 1. As indicated, 
groups differed significantly from each other in all 
measures except body mass index (BMI). 

Path analysis for asthma and COPD

As the results of logistic regression analyses (see 
Supplementary) were not well suited for understanding, we 
focused on other analytical approaches. Among spirometric 
parameters, only FEV1 could be integrated into the path 
analysis network of clinical signs and symptoms in a 
consistent and robust manner. When replacing FEV1 by 
MMEF or by MEF50, these parameters turned out to be 
inferior to FEV1 as indicated by lower CFI values. The path 
analysis model incorporating FEV1 and clinical signs and 
symptoms is shown in Figure 2. It comprised asthma and 
COPD in a two-group design, assuming the same structure 
for both, but with the possibility that some relationships 
were significant in only one of the two groups. The overall 
χ2 statistics was 49.59 with 36 degrees of freedom (P=0.065), 
the CFI 0.978, indicating an acceptable fit. The differences 
between asthma and COPD were related to the symptom 
of wheezing. In asthma, wheezing was significantly linked 
to FEV1 and dyspnea at strong exertion, whereas this was 
not the case in COPD, underlining the minor role of this 
symptom in this disease.

Decision trees

For each of the comparisons listed in the methods section, 
decision trees were developed. In order to facilitate their 
use, variables were not adjusted for age, sex and BMI. 
Instead, these characteristics were included explicitly and 
offered to the search algorithm together with the other 

variables. To illustrate the major results, we show the two 
trees referring to either the comparison of asthma vs. 
COPD vs. control (Figure 3), or that of asthma vs. COPD 
(Figure 4).

Asthma vs. COPD vs. control
In the first tree, the relevant variables occurring as nodes 
were MMEF, age, allergic rhinitis, current smoking, sex, and 
wheezing (Figure 3). As can be seen, some combinations of 
values along the tree were associated with major alterations 
in the distribution over diagnoses compared to baseline 
(root node), while other combinations were not associated 
with such alterations and thus barely informative. When 
having a high MMEF, no allergic rhinitis and no wheezing, 
the likelihood of being without respiratory disease was 
increased from 34.4% to 73.5%. When having high MMEF, 
allergic rhinitis and wheezing, the likelihood for asthma was 
maximized (70.1% vs. 41.0%), whereas the likelihood for 
COPD was maximized (80.4% vs. 24.6%) when having low 
MMEF, high age and being male. Conversely, the diagnostic 
gain was very low when, e.g., subjects had a low MMEF and 
low age and were smokers. These observations underlined 
the capability of the trees to indicate both informative 
and non-informative combinations of values. The overall 
diagnostic accuracy in the tree was 64.7%. Separate trees 
for asthma vs. control and COPD vs. control are shown in 
the Figures S1, S2.

Asthma vs. COPD
The second decision tree shown (Figure 4) referred to the 
distinction between asthma and COPD, implicitly assuming 
that an obstructive airway disease is present. The important 
variables under this condition were MEF50, MEF25, age, 
sex, phlegm and wheezing. The combination of low MEF50, 
high age and male sex was most indicative of COPD (90.0% 
vs. 37.5%), while asthma was most likely when MEF50 
and MEF25 were relatively high and age was low (99.3% 
vs. 62.5%). Non-informative was the combination of low 
MEF50, low age and absence of phlegm, amongst other 
combinations. The overall diagnostic accuracy in this tree 
was 82.3%. Further decision trees are presented in the 
supplement.

All decision trees showed the phenomenon that specific 
combinations of values were informative for diagnosis, 
while others did not carry relevant information. The 
informative and non-informative combinations could 
always be easily recognized. This variation in performance 

https://cdn.amegroups.cn/static/public/JTD-20-3539-supplementary.pdf
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Subjects undergoing capnovolumetric measurement 
(n=1,400)

Subjects with full bodyplethysmographic data 
(n=1,294)

Subjects with full and plausible 
bodyplethysmographic and capnovolumetric data 

(n=1,287)

Subjects with the diagnosis of asthma, and/or COPD, and subjects belonging to the control group, 
each with full and plausible bodyplethysmographic and capnovolumetric data (n=1,057)

Excluded (n=106):
•	 no bodyplethysmographic measurement (n=61)
•	 Bronchial provocation challenge before capnovolumetric testing (n=29)
•	 Bronchodilator testing before capnovolumetric measurement (n=16)

Excluded (n=7):
•	 invalid bodyplethysmographic measurement (n=5)
•	 invalid capnovolumetric measurement (n=2)

Excluded (n=230):
Subjects neither with the diagnosis of asthma nor COPD nor belonging to 
the control group

Asthma 
(n=433)

COPD 
(n=260)

Control 
(n=364)

Figure 1 Flow-chart of the selection process leading to a subset of 1,287 subjects included into the present analysis. A total of 1,400 
consecutive subjects underwent capnovolumetry. Only those with complete measurements and without bronchial provocation challenge or 
bronchodilator testing were included. This resulted in a final set of 1,287 participants, with either the diagnosis of COPD, or asthma, or 
other respiratory diseases (such as restrictive disorders, pneumonia or other infections, pleural diseases, lung tumor, bronchiectasis), or no 
respiratory disease (control subjects). Subjects with the diagnoses of COPD and asthma were assigned to the COPD group, as this disease 
dominated the functional alterations. COPD, chronic obstructive pulmonary disease.

renders it questionable, whether overall measures such as 
specificity and sensitivity are adequate, and we therefore 
do not present these values. In the analysis of asthma we 
did not differentiate between allergic and non-allergic 
asthma, as a proper differential diagnosis probably needs 

additional information not commonly available to a 
GP. Decision trees were essentially unchanged if the 
forced expiratory flow rates were substituted by FEV1, 
and there were only minor losses in predictive accuracy 
from this substitution indicating that FEV1 was almost as 
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informative as the flow rates. 

Probabilistic networks

The probabilistic network contained only one node 
comprising the distribution over the diagnoses of COPD, 
asthma and control, in contrast to the decision trees for 
which the distribution appeared in each final node (leaf). 
If the variables attained specific values in an individual 
subject, changes in the likelihood of diagnoses resulted via 

the network of conditional probabilities. When choosing 
values for the nodes directly linked to the diagnostic node, 
the influence of all nodes mediated through these nodes was 
screened, thus, not all nodes were directly relevant for the 
diagnostic node. We described the diagnostic power of the 
network by selecting values for the directly relevant nodes 
that maximized the likelihood for each of the diagnoses.

Figure 5 shows the diagnostic network comprising 
clinical signs and symptoms without lung function. The 
diagnostic node was directly linked to dyspnea at mild 

Table 1 Baseline characteristics of study participants. The table shows absolute numbers or percentages in case of frequencies, median values and 
quartiles in case of continuous parameters

Parameter
Diagnostic groups

Comparison 
between groups

Control Asthma COPD Others P value

Gender (M/F) 172/192 155/278 163/97 99/131 <0.001

Age (y) 55 (41; 67) 53 (38; 63) 66 (57; 75) 60 (58; 62) <0.001

BMI (kg/m2) 26.9 (23.9; 30.9) 26.9 (24.1; 31.1) 26.6 (22.8; 30.5) 28.0 (27.2; 28.8) 0.395

FEV1 Z-score −0.13 (−0.88; 0.53) −0.82 (−1.53; −0.07) −2.56 (−3.35; −1.78) −0.72 (−0.88; −0.56) <0.001

FEV1/FVC Z-score 0.10 (−0.51; 0.76) −0.68 (−1.36; 0.10) −2.58 (−3.56; −1.67) −0.07 (−0.23; −0.09) <0.001

FVC Z-score −0.21 (−0.92; 0.45) −0.38 (−1.14; 0.35) −1.32 (−2.19; −0.60) −0.70 (−0.86; −0.53) <0.001

MEF25 Z-score −0.42 (−0.50; −0.34) −0.89 (−0.95; −0.82) −1.35 (−1.41; −1.29) −0.56 (−0.66; −0.47) <0.001

MEF50 Z-score −0.30 (−0.39; −0.20) −1.08 (−1.17; −0.98) −2.32 (−2.39; −2.26) −0.76 (−0.89; −0.63) <0.001

MEF75 Z-score −0.14 (−0.24; −0.04) −0.76 (−0.86; −0.66) −2.53 (−2.65; −2.42) −0.64 (−0.79; −0.49) <0.001

MMEF Z-score 0.06 (−0.04; −0.16) −0.86 (−0.96; −0.76) −2.24 (−2.35; −2.14) −0.34 (−0.49; −0.19) <0.001

PEF Z-score −0.38 (−0.54; −0.23) −0.85 (−0.99; −0.71) −2.60 (−2.78; −2.43) −0.92 (−1.13; −0.71) <0.001

Current smoking 19.3% positive 11.6% positive 36.3% positive 17.1% positive <0.001

Ex-smoking 32.0% positive 34.8% positive 57.1% positive 32.0% positive <0.001

Wheezing in the last  
12 months

40.5% positive 63.2% positive 56.3% positive 46.3% positive <0.001

Allergic rhinitis 21.8% positive 44.4% positive 17.5% positive 18.0% positive <0.001

Frequent cough 34.5% positive 43.1% positive 36.7% positive 44.3% positive 0.032

Frequent phlegm 25.9% positive 31.5% positive 43.0% positive 38.6% positive <0.001

Dyspnea upon strong 
exertion

50.9% positive 67.9% positive 89.3% positive 66.5% positive <0.001

Dyspnea upon weak 
exertion

18.6% positive 20.6% positive 49.0% positive 23.6% positive <0.001

The categorical variables were compared between the diagnostic groups using the chi-square statistics, while continuous parameters were 
compared using the Kruskal-Wallis test. COPD, chronic obstructive pulmonary disease; BMI, body mass index; FEV1, forced expiratory volume 
in one second; FVC, forced vital capacity; MEF 25, mean expiratory flow rate at 25% vital capacity; MEF50, mean expiratory flow rate at 50% 
vital capacity; MEF75, mean expiratory flow rate at 75% vital capacity; MMEF, maximal mid-expiratory flow; PEF, peak expiratory flow.
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exertion, wheezing, ex-smoker status and current smoking. 
The probability for COPD achieved its highest gain (67% 
vs. 27%) when dyspnea at mild exertion, current smoking 
and wheezing were present. The probability for asthma was 
highest (69% vs. 42%) when no dyspnea at mild exertion, 

no current smoking but wheezing applied. The probability 
for control was highest (50% vs. 31%) when there was 
no dyspnea at mild exertion, no current smoking and no 
wheezing. The BIC score of this model was −3,826.9.

The analogous network with inclusion of FEV1 is shown 
in Figure 6. The node containing the three diagnoses was 
linked to current smoking and ex-smoking status, as well as 
FEV1. The former links to wheezing and dyspnea at mild 
exertion were now mediated via FEV1, underlining the 
importance of lung function. The probability for COPD 
was maximized for low FEV1 in combination with current 
smoking (81% vs. 27%), while that for asthma was maximal 
for low FEV1 in combination with being a non-smoker 
(66% vs. 42%), and that for control subjects was maximal 
for high FEV1 in combination with being a non-smoker 
(45% vs. 31%). These results were in line with those of the 
decision trees, showing that the diagnosis of COPD could 
be achieved with higher accuracy than the other diagnoses. 
The BIC score of the model was −3,845.3.

Discussion

In the present study, we evaluated the role of anamnestic 
questions in the diagnosis of asthma and COPD, with or 
without inclusion of spirometric lung function. By using 
a small number of simple questions comprising eight 
items on clinical history and symptoms, and eventually 
spirometry, the set-up resembled the situation encountered 
in general practice, where resources are strongly limited. 
Based on modern statistical approaches, we finally aimed at 
comprehensive algorithms that might be easily transferred 
to clinical practice. COPD was most easily recognized, 
whereas stable asthma turned out to be more difficult. In 
most comparisons, smoking history was relevant, moreover 
wheezing and dyspnea upon exertion, whereas phlegm and 
cough were of minor importance. The role of lung function 
parameters depended on the specific diagnostic comparison 
but among them FEV1 appeared to be most robust. 
All decision models required at least some anamnestic 
information, thereby underlining the clinical intuition 
that spirometric lung function alone is never sufficient for 
diagnosis. Our results may be useful to improve the quality 
and comparability of diagnostic procedures in GP settings.

Among respiratory diseases, obstructive disorders 
represent a considerable proportion of diagnoses. 
Although their therapy bears similarities, e.g., in the use 
of bronchodilators, there are also differences, e.g., in the 
prescription of inhaled corticosteroids. Moreover, their 

Current 
smoker

Frequent 
cough

Wheezing in the 
last 12 months

Dyspnea upon 
strong exertion

FEV1 Z-score

Dyspnea upon 
mild exertion

Ex-smoker

Frequent 
phlegm

−0.865
−0.267

0.347
0.395

0.243
0.143

0.270
0.126

0.248
0.132

0.237
0.561

0.231
0.158

−0.139

0.114

−0.299
−0.159

Figure 2 Path analysis model comprising FEV1 as continuous variable 
and clinical signs and symptoms as binary variables. All variables were 
adjusted for age, sex and BMI, and z-scores (24) were used for FEV1. 
Self-attributed allergic rhinitis was excluded from the list of questions 
since the number of missing values was too high. The model used 
data for asthma and COPD, which were analyzed in parallel in a two-
group design. The arrows indicate directed relationships analogous to 
linear regression. Only relationships that were statistically significant 
in at least one of the two groups are shown. The numbers besides 
the arrows indicate the standardized regression coefficients of the 
respective arrow, with the upper value referring to COPD and the 
lower value to asthma. If only value is shown, it refers to asthma, 
and dotted arrows indicate relationships that were significant only in 
asthma but not in COPD. As can be seen, this was the case if wheezing 
was involved. The model was estimated using the generalized least 
squares method in AMOS; measures of the goodness of fit are given 
in the text. FEV1, forced expiratory volume in one second; COPD, 
chronic obstructive pulmonary disease.
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clinical course and prevention measures are different. 
Thus, a diagnosis of asthma versus COPD has practical 
consequences but it requires a minimum of information 
not always available to a GP. It would be helpful to make a 
diagnosis with high reliability, wherever possible, but also 
to identify individuals with functional or clinical patterns 
requiring the involvement of a specialist. Another problem 

is that spirometry is not available in all general practices 
and, if performed, is not guaranteed to satisfy established 
quality criteria (29). To simulate the worst case, we therefore 
examined the diagnostic potential of anamnestic data 
without spirometry. In our previous studies (12,13), lung 
function data had only been used to decide on the presence 
of airway obstruction, while anamnestic questions were 

Figure 3 Decision tree for the comparison of asthma, COPD and control subjects obtained by the CHAID algorithm. All eight questions 
(wheezing in the last 12 months, self-diagnosed allergic rhinitis, dyspnea at strong or mild exertion, cough, phlegm, current smoker, ex-
smoker), moreover all spirometric parameters (FEV1, FVC, FEV1/FVC, MEF25, MEF50, MEF75, MMEF), as well as age, sex and BMI were 
offered to the algorithm which selected the optimal criteria at each node. To account for the dependence of lung function parameters on 
anthropometric characteristics, z-scores were used for the spirometric parameters (19,20). The figure shows the average result of a 10-
fold cross-validation. The bars at each node indicate the percentages of subjects attributed to one of the three diagnoses. COPD, chronic 
obstructive pulmonary disease; FEV1, forced expiratory volume in one second; FVC, forced vital capacity; MEF25, MEF50, MEF75, mean 
expiratory flow rates at 25%, 50% and 75% of vital capacity; MMEF, maximal mid-expiratory flow rate. 
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analysed only in relation to capnovolumetry (14), which is 
neither widely available nor equivalent to spirometry (13).

For the purpose of our analysis, the reliability of 
diagnoses had to be guaranteed, and this was achieved by 
including subjects from a specialists’ practice. In more than 

90% of subjects, the diagnoses had been established prior to 
inclusion, furthermore the answers to the questions that we 
used were never given to the physician. By this approach, 
we aimed to mimic the situation of a subject newly 
diagnosed under GP conditions. The differential diagnoses 

Figure 4 Decision tree for the comparison of asthma and COPD. Only subjects with asthma or COPD were included. Anamnestic questions 
(wheezing in the last 12 months, self-diagnosed allergic rhinitis, dyspnea at strong or mild exertion, cough, phlegm, current smoker, ex-
smoker), spirometric parameters (FEV1, FVC, FEV1/FVC, MEF25, MEF50, MEF75, MMEF), as well as age, sex and BMI were offered to the 
algorithm (CHAID) which selected the optimal criteria. Again, z-scores were used for spirometric parameters (19,20). The figure shows the 
average result of a 10-fold cross-validation. The bars at each node indicate the percentages of subjects attributed to one of the two diagnoses. 
FEV1, forced expiratory volume in one second; FVC, forced vital capacity; MEF25, MEF50, MEF75, and mean expiratory flow rate at 25%, 
50% and 75% of vital capacity; MMEF, maximal mid-expiratory flow rate. To illustrate the heterogeneity in the degree of prediction we 
present OR of asthma vs. COPD and conversely, which are given at the respective final nodes. OR, odds ratios; COPD, chronic obstructive 
pulmonary disease; FEV1, forced expiratory volume in one second; FVC, forced vital capacity; MEF25, MEF50, MEF75, mean expiratory 
flow rates at 25%, 50% and 75% of vital capacity; MMEF, maximal mid-expiratory flow rate. 
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included comparisons with the control group showing no 
signs of respiratory disease, as well as comparisons with 
the complement of asthma or COPD including subjects 
who might have obstructive or other airway disorders. The 
results confirmed the expectation that diagnostic reliability 
was maximal with the control group and lower with the 
complementary, inhomogeneous groups. This difference 
underlined the importance of prior information to get the 
diagnostic process as targeted as possible.

Among the spirometric measures, FEV1 was the only 
robust and consistent parameter in both the path analysis 
and the probabilistic model, although not in the decision 
trees which, however, covered a range of diagnostic 
comparisons. This is an argument in favour of FEV1 as 
primary measure from spirometry. Another argument is 
that among spirometric measures, FEV1 is less dependent 
on a potentially compromised (29,30) quality of spirometric 
measurements than expiratory flow rates. Whether a lower 
quality of spirometry would affect its value relative to the 
questions, might be addressed in trials performed under GP 
conditions. 

Algorithms for the optimization of diagnostic processes 
and the identification of exacerbation risk in asthma or 
COPD have been proposed in a number of previous 
studies, using a variety of statistical approaches such as 
logistic regression, decision trees including Random Forest, 
support vector machines and neural networks (6-11,31,32). 
These algorithms incorporated anamnestic questions and 
spirometric parameters, similar to our study, but also data 
such as the bronchodilator response that is not routinely 
assessed in GP conditions. Our study has similarities to that 
by Metting and co-workers (6) who developed a decision 
tree from a large data set, and to that by Spathis and co-
workers who developed a Random Forest ensemble of trees 
for the diagnosis of asthma and COPD (7). Compared 
to previous studies, our goal was (I) to limit the required 
information as much as possible and (II) to focus on 
algorithms that, as far as possible, could be intuitively 
captured irrespective of the fact that they might have been 
found with complicated mathematics. 

This was the reason why we opted for single decision 
trees that can be used without computer, although these 

Figure 5 Probabilistic network describing the relationship between clinical signs and symptoms, excluding lung function, in terms of 
conditional probabilities (arrows) and distributions over diagnoses as indicated by the bars shown at each node. Subjects with asthma 
or COPD or control subjects were included. The network is based on seven anamnestic questions (wheezing in the last 12 months, 
dyspnea at strong or mild exertion, cough, phlegm, current smoker, ex-smoker) as binary variables. Self-attributed allergic rhinitis was 
excluded since the number of missing values was too high. The basic structure was taken from the path analysis model (Figure 1) and 
modified to achieve an optimal fit based on the BIC. COPD, chronic obstructive pulmonary disease; BIC, bayesian information criterion.
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may be improved by an ensemble of trees (Random Forest) 
being more reliable than a single tree (14). The price payed 
is the lack of visualization and usability as the ensemble 
can only be evaluated with a computer. Moreover, in our 
previous study the difference between the results of a single 
tree and the ensemble were minor (14). The trees and the 
probabilistic network involved the a priori distributions 
over diagnoses, which may differ from practice to practice. 
The implementation of a priori probabilities would provide 
a way to adapt the algorithm to local conditions. It has to be 
mentioned, however, that the Bayesian networks, although 
easily depicted, can only be efficiently evaluated via 
computer, which might be easily achieved by an App. The 
path analysis was not utilized for the purpose of diagnosis, 
but only to understand the relationship between questions 
and lung function including differences between COPD 

and asthma, which indeed occurred for the associations with 
wheezing.

Limitations

The study aimed at a potential application in GP settings 
but the data was obtained in a specialist practice in order 
to ensure the validity of diagnoses and assessments, and the 
spirometry might have been of higher quality than many 
measurements performed in general practices (29,30). It 
is important to note that pulmonary outpatient clinics in 
Germany are organized as private practices of specialists in 
primary care that can be visited by patients without referral. 
Therefore, we believe that patients recruited in general 
practice settings would not differ much from our study 
population which has relatively good lung function values 

Figure 6 Probabilistic network describing the relationship between clinical signs and symptoms, as well as FEV1, in terms of conditional 
probabilities (arrows) and distributions over diagnoses as indicated by the bars shown at each node. Subjects with asthma or COPD or 
control subjects were included. The network is based on seven anamnestic questions (wheezing in the last 12 months, dyspnea at strong or 
mild exertion, cough, phlegm, current smoker, ex-smoker) as binary variables. Self-attributed allergic rhinitis was excluded since the number 
of missing values was too high. As only categorical variables were used, FEV1 was categorized according to the lower limit of normal (19) in 
terms of the z-score −1.645. The basic structure was taken from the path analysis model (Figure 1) and was modified to achieve an optimal fit 
based on the BIC. COPD, chronic obstructive pulmonary disease; BIC, bayesian information criterion.
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(see Table 1). Nevertheless, the results should be validated in 
a general practice setting. Moreover, subjects were treated 
with respiratory medication, thereby reducing the burden 
from symptoms and functional deteriorations. Thus, in 
newly diagnosed subjects diagnostic accuracy might well 
be higher than observed in the present study, especially 
for asthma, for which the likelihood to be detected by the 
algorithms proposed by us might be reduced. In case of 
COPD, functional alterations and clinical signs are known 
to be less variable, thus the likelihood that these subjects 
are correctly diagnosed may not have been much affected 
by treatment. The diagnostic accuracy might also have been 
affected by the fact that the 34 patients with asthma and 
COPD were attributed to COPD in order to have unique 
diagnoses. This, however, was only a minority of patients 
and the proper diagnosis of concomitant asthma and COPD 
cannot be reasonably expected from a simple tools which we 
used. Using separate trees for asthma vs. control and COPD 
vs. control and their combination, we tried to identify these 
patients but this was not possible with sufficient specificity 
(see Supplementary). Another limitation is that the study is a 
secondary analysis of data addressing the diagnostic value of a 
novel lung function method (capnovolumetry). It is, however, an 
independent analysis and does not refer to the previous findings. 
Irrespective of this, its results should be validated using both 
different cohorts and methods. The strength of the study is the 
high quality of assessments and the large sample size. 

Conclusions

We propose simple and at the same time statistically 
validated approaches for the diagnosis of asthma and 
COPD, whereby the required information was compact 
enough in view of the inevitable limitations of diagnostic 
tools under GP conditions. For this purpose decision 
trees and probabilistic networks were developed. Smoking 
history, age, dyspnea upon exertion and wheezing turned 
out as primary diagnostic determinants, resulting in a 
considerable diagnostic gain when used either alone or in 
combination with FEV1. Overall, the diagnosis of COPD 
was more accurate than that of stable asthma. These 
findings might be helpful as a starting point for standardized 
diagnostic algorithms that may be easily understood by the 
user and also valuable for the training of physicians.
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Logistic regression analysis 

These exploratory analyses were performed with either 
inclusion of all variables or stepwise forward selection. All 
study questions except dyspnea upon strong exertion and 
cough appeared as statistically significant predictors in at 
least one of the comparisons, in addition to age and sex. 
The functional measures identified as relevant comprised 
expiratory flow rates (MEF25, MEF50, MEF75, MMEF), 
depending on the comparison. Due to collinearity, the 
results of the logistic regression analyses were not very 
consistent and robust against inclusion or exclusion of 
variables. We therefore focused on the other approaches 
that are better capable of describing complex relationships 
without the introduction of difficult-to-interpret interaction 
terms.

Further decision trees

Again using the CHAID algorithm, we established separate 
trees for asthma or COPD versus control (Figures S1 and S2).  
All eight questions (wheezing in the last 12 months, self-
diagnosed allergic rhinitis, dyspnea at strong or mild 
exertion, cough, phlegm, current smoker, ex-smoker), 
moreover all spirometric parameters (FEV1, FVC, 
FEV1/FVC, MEF25, MEF50, MEF75, MMEF), as well as 

age, sex and BMI were offered to the algorithm which 
selected the optimal criteria at each node. To account 
for the dependence of lung function parameters on 
anthropometric characteristics, z-scores were used for 
the spirometric parameters. The diagnostic accuracy was 
70.5% and 88.1%, respectively. We also used the whole 
group of subjects without asthma or COPD instead of the 
control group for comparison, i.e., the reference group 
included subjects with other respiratory diseases. Under 
this condition, the overall diagnostic accuracy for the 
tree was slightly lower (62.6%) but its structure and the 
variables involved remained the same.

The trees shown in Figures S1 and S2 were then used in 
an attempt to identify subjects with the diagnosis of both 
asthma and COPD, requiring that both trees indicated 
the respective diagnosis. Among the 34 patients, 32 (94%) 
were correctly identified as having asthma and COPD, 
however among the 659 patients having either asthma or 
COPD but not both, only 36% were correctly identified. 
This indicates that with the tools used in the present study 
that were limited to a minimal set a proper diagnosis of the 
combination of asthma and COPD cannot be achieved. For 
this purpose, more advanced procedures such as bronchial 
provocation tests or bronchodilator tests or the assessment 
of the concentration of exhaled nitric oxide (FeNO) is 
necessary.

Supplementary
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Figure S1 Decision tree for the comparison of asthma and control subjects obtained by the CHAID algorithm. The figure shows the 
average result of a 10-fold cross-validation. To account for the dependence of lung function parameters on anthropometric characteristics, 
z-scores were used for the spirometric parameters. FEV1, forced expiratory volume in one second; FVC, forced vital capacity; MEF25, 
MEF50, MEF75, mean expiratory flow rates at 25%, 50% and 75% of vital capacity; MMEF, maximal mid-expiratory flow rate.
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Figure S2 Decision tree for the comparison of COPD and control subjects obtained by the CHAID algorithm. The figure shows the 
average result of a 10-fold cross-validation. To account for the dependence of lung function parameters on anthropometric characteristics, 
z-scores were used for the spirometric parameters. FEV1, forced expiratory volume in one second; FVC, forced vital capacity; MEF25, 
MEF50, MEF75, mean expiratory flow rates at 25%, 50% and 75% of vital capacity; MMEF, maximal mid-expiratory flow rate; PEF, peak 
expiratory flow.


