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Background: Accurate prognostic estimation for esophageal cancer (EC) patients plays an important role 
in the process of clinical decision-making. The objective of this study was to develop an effective model to 
predict the 5-year survival status of EC patients using machine learning (ML) algorithms.
Methods: We retrieved the information of patients diagnosed with EC between 2010 and 2015 from the 
Surveillance, Epidemiology, and End Results (SEER) Program, including 24 features. A total of 8 ML 
models were applied to the selected dataset to classify the EC patients in terms of 5-year survival status, 
including 3 newly developed gradient boosting models (GBM), XGBoost, CatBoost, and LightGBM,  
2 commonly used tree-based models, gradient boosting decision trees (GBDT) and random forest (RF), and 
3 other ML models, artificial neural networks (ANN), naive Bayes (NB), and support vector machines (SVM). 
A 5-fold cross-validation was used in model performance measurement.
Results: After excluding records with missing data, the final study population comprised 10,588 patients. 
Feature selection was conducted based on the χ2 test, however, the experiment results showed that the 
complete dataset provided better prediction of outcomes than the dataset with removal of non-significant 
features. Among the 8 models, XGBoost had the best performance [area under the receiver operating 
characteristic (ROC) curve (AUC): 0.852 for XGBoost, 0.849 for CatBoost, 0.850 for LightGBM, 0.846 for 
GBDT, 0.838 for RF, 0.844 for ANN, 0.833 for NB, and 0.789 for SVM]. The accuracy and logistic loss 
of XGBoost were 0.875 and 0.301, respectively, which were also the best performances. In the XGBoost 
model, the SHapley Additive exPlanations (SHAP) value was calculated and the result indicated that the four 
features: reason no cancer-directed surgery, Surg Prim Site, age, and stage group had the greatest impact on 
predicting the outcomes.
Conclusions: The XGBoost model and the complete dataset can be used to construct an accurate 
prognostic model for patients diagnosed with EC which may be applicable in clinical practice in the future.
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Introduction

Esophageal cancer (EC) is the seventh most common 
cancer worldwide and the sixth leading cause of cancer-
related deaths. There were 544,076 new EC-related deaths 
in 2020, accounting for 5.5% of all new cancer-related 
deaths. The main pathological type of EC is squamous cell 
carcinoma. The incidence of esophageal squamous cell 
carcinoma is generally declining in some high-risk countries 
in Asia, but the incidence of esophageal adenocarcinoma is 
rising rapidly in high-income countries. Studies have shown 
that esophageal adenocarcinoma will surpass the incidence 
of esophageal squamous cell carcinoma in high-income 
countries in the future and become the major type of EC (1). 
Due to the heterogeneity of patients with EC in terms of 
age, pathological types, pathological stages, and treatment 
regimens, its prognosis varies greatly, and has received 
much attention.

With the development of computer technology, the 
application of artificial intelligence in the medical field 
is increasingly extensive. Machine learning (ML) is one 
of the best-known technologies in the field of artificial 
intelligence and has become a hot spot of medical research. 
A variety of ML techniques have been shown to be effective 
in predicting tumor susceptibility, recurrence, and survival 
of malignant tumors. In an earlier study, gradient boosting 
machines, support vector machines (SVM), and a custom 
ensemble were used to predict the survival of lung cancer 
patients (2). Some researchers used logistic regression 
(LR), artificial neural networks (ANN), and decision trees 
(DT) to study the survival rate of breast cancer. The results 
showed that compared with the two other models, DT had 
higher accuracy (3). In the field of EC, research of artificial 
intelligence has also been conducted. For example, ANN 
was used to predict the prognosis of EC (4).

Despite the recent popularity of deep learning 
neural networks, the gradient boosting methods are still 
recognized as the best-in-class in the field of ML when 
it comes to small-to-medium structured/tabular datasets, 
due to the lower requirement of training time and lower 
complexity of hyperparameter tuning. The three newly 
proposed gradient boosting models (GBM) of XGBoost, 
CatBoost, and LightGBM all excel in both speed and 
accuracy, and have been widely used in the medical field 
in recent years. In previous studies, these models have 
been shown to be of great value in medical imaging (5-8). 
In oncology, they are used in the diagnosis of malignant 
tumors (9,10), prediction of clinical burden before and after 

cancer surgery (11), and prediction of adverse reactions to 
adjuvant therapy (12), among other applications. They have 
also been shown to be effective in the prognostic prediction 
of malignant tumors (13,14).

In this study, information from the Surveillance, 
Epidemiology, and End Results (SEER) Program was 
used to select relevant features of patients diagnosed with 
EC. We used XGBoost, CatBoost, LightGBM, gradient 
boosting decision trees (GBDT), ANN, random forest (RF), 
naive Bayes (NB), and SVM to predict the 5-year survival 
status of patients, and the performances of these models 
were reported in terms of the area under the receiver 
operating characteristic (ROC) curve (AUC), accuracy, and 
logistic loss.

We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://dx.doi.
org/10.21037/jtd-21-1107).

Methods

Data processing

We retrieved the information of patients diagnosed with EC 
between 2010 and 2015 from the SEER Program, including 
24 features displayed in Table 1. As the information in the 
SEER database does not require explicit consent from the 
patients, our study was not subject to the ethical approval 
requirements of the institutional review board.

The target classification of 5-year survival status for each 
participant (case) was calculated on the basis of survival 
months and vital status recode. The cases with survival 
months greater than or equal to 60 months were labelled as 
“Alive”, while the cases with “Dead” vital status recode and 
survival months less than 5 years were labelled as “Dead”. 
The cases with “Alive” vital status recode and survival 
months less than 5 years were removed. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Statistical analysis

Data were analyzed using the Python packages NumPy 
(https://numpy.org/), pandas (https://pandas.pydata.org/), 
and scikit-learn (https://scikit-learn.org/stable/). Categorical 
features were described as the number of categories, the 
category with the highest frequency, and the corresponding 
frequency. Continuous features were represented by 
means, standard deviations, and ranges. We performed 

https://dx.doi.org/10.21037/jtd-21-1107
https://dx.doi.org/10.21037/jtd-21-1107
https://numpy.org/
https://pandas.pydata.org/
https://scikit-learn.org/stable/
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χ2 tests between each feature and the target and 5-year 
survival to identify the features that are the most likely to 
be independent and therefore irrelevant for classification. 
A P value greater than 0.05 was considered a statistically 
significant difference.

Model building

Gradient boosting is a family of ensemble tree-based 
frameworks that consist of iteratively converting various 
weak classifiers with respect to distribution of a single 
final strong classifier. According to the empirical risk 
minimization principle, the method applies a steepest 
descent iteration to minimize the average value of the loss 
function on the training set, namely, minimize the empirical 
risks. The XGBoost, CatBoost, and LightGBM libraries are 
state-of-the-art GBMs, recognized in a number of ML and 
data mining challenges.

Extreme gradient boosting, or XGBoost, a scalable 
ML system for tree boosting, is characterized by a highly 
scalable end-to-end tree boosting system, theoretically 
justified weighted quantile sketch, the sparsity-aware 
algorithm, and the effective cache-aware block structure for 
out-of-core tree learning strategy (15).

Categorical boosting, CatBoost, is specifically for 
handling categorical features without preprocessing, where 
a new schema is used to calculate leaf values when selecting 
the tree structure, effectively reducing overfitting (16).

The LightGBM is a new GBM based on two novel 
techniques, gradient-based one-side sampling (GOSS) and 
exclusive feature bundling (EFB) to speed up the training 
process of boosting by excluding a significant proportion of 
data instances with small gradients and bundling mutually 
exclusive features to reduce the number of features, 
respectively (17).

In this study, the 3 models were used along with 2 other 
commonly used tree-based models, GBDT and RF, and  
3 classical ML models, ANN, NB, and SVM, for comparison. 
The models were built using the Python packages XGBoost 
(https://xgboost.readthedocs.io/), CatBoost (https://catboost.
ai/), LightGBM (https://lightgbm.readthedocs.io/), and 
scikit-learn. Particularly, the ANN model used in this paper 
was chosen from 14 different ANN structures (n-2-1, n-3-1, 
n-4-1, n-5-1, n-6-1, n-2-2-1, n-2-4-1, n-2-6-1, n-4-2-1, n-4-
4-1, n-4-6-1, n-6-2-1, n-6-4-1, n-6-6-1; n = the number of 
features) as in the study of Sato et al. (4).

Notably, except for CatBoost, which is capable of 
handling categorical features, and LightGBM, which 

offers native built-in support for categorical features, all 
categorical features were encoded outside of the learner 
with the label encoding technique.

Model evaluation

Cross-validation is a form of model validation which 
attempts to improve on the basic methods of hold-
out validation by leveraging subsets of data and an 
understanding of the bias/variance trade-off in order to 
gain a better understanding of how the models will actually 
perform when applied outside of the data it was trained 
on (18). The K-fold cross-validation is one of the most 
common resampling techniques used in evaluating ML 
models. The original sample is randomly divided into k 
equal sized subsamples. Among the k subsamples, a single 
subsample is held as the validation data to test the model, 
and the residual k−1 subsamples are used as training data. 
The cross-validation process is repeated k times, with each 
of the k subsamples used exactly once as the test data. The k 
results can then be averaged to produce a single estimation, 
namely, the performance measure of the model. In this 
paper, for the dataset with unequal class proportions, the 
stratified k-fold was used, where the folds were made by 
preserving the percentage of samples for each class. The 
stratified k-fold cross-validation was conducted by the 
Python package scikit-learn.

Hyperparameter tuning

Hyperparameters are adjustable parameters that control 
the model training process and dramatically influence 
the performance of the models. Hyperparameter tuning 
is an optimization problem where the objective function 
of optimization is unknown or a black-box function (19). 
The two traditional ways of performing hyperparameter 
optimization are grid search and random search. Grid 
search performs an exhaustive search through a manually 
specified subset of the hyperparameter space, which 
is computationally very expensive. In random search, 
the hyperparameters are randomly selected, and not 
every combination of parameters is tried. These two 
methods do not learn from previous results. Conversely, 
Bayesian optimization iteratively evaluates a promising 
hyperparameter configuration based on prior information, 
including previous hyperparameter configurations and the 
corresponding objective function loss of the model, and 
then updates it. Bayesian optimization allows exploration 

https://xgboost.readthedocs.io/
https://catboost.ai/
https://catboost.ai/
https://lightgbm.readthedocs.io/
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(trying new hyperparameter values) and exploitation (using 
hyperparameter configuration resulting in the lowest 
objective function loss) to be naturally balanced during the 
search. In practice, it is shown that compared to grid search 
and random search, Bayesian optimization is able to obtain 
better results in fewer evaluations, due to the ability to 
reason about the quality of trials before they are run.

In this paper, Bayesian optimization was implemented 
by a hyperparameter optimization framework Optuna (20), 
using the Python package optuna 2.8.0 (https://optuna.
org/), where we can define the parameter space and the 
trials, adopt state-of-the-art algorithms for sampling 
hyperparameters, and efficiently prune unpromising trials. 
A trial is a single execution of the objective function, which 
was defined as the average logistic loss of the 5-fold cross-
validation of the model in this paper. In each trial, the 
hyperparameters were selected from the parameter space 
according to the prior information, and then the stratified 
5-fold cross-validation was executed to produce the 
average logistic loss to estimate the model with the selected 
hyperparameters. The parameter spaces of each model are 
shown in Table 2 and the number of trials was set at 100. 
After 100 trials, the hyperparameters with minimum average 
logistic loss were chosen for the final model comparison. 
Notably, there were fewer hyperparameters used for SVM 
and NB, obtained by the trial-and-error method.

Feature importance

The ML models are able to build non-linear and complex 
relationships between the features and target. However, it 
is a challenge to understand why a model makes a certain 
prediction and access the global feature importance, which 
is, in a way, a black box. To address this problem, Lundberg 
and Lee presented a unified framework, SHapley Additive 
exPlanations (SHAP), to improve the interpretability (21). 
The SHAP value is the average marginal contribution of a 
feature value across all possible coalitions. The interpretation 
of the SHAP value for feature value 𝑗 is: the value of the 𝑗-th 
feature contributed 𝜙𝑗 to the prediction of this particular 
instance compared to the average prediction for the dataset. 
In this paper, the SHAP values were calculated by the Python 
package SHAP (https://shap.readthedocs.io/).

Results

A total of 10,588 patients (cases) were selected from the 
SEER database, whose years of diagnoses were from 2010 

to 2015. The samples consisted of two classes (9,048 cases 
with “Dead” status and 1,540 cases with “Alive” status), 
which showed the imbalance of the sample number. A set 
of features were selected from the dataset, consisting of  
21 categorical features and 3 numerical features, as 
displayed in Table 1. There were 5 features with p-values 
greater than 0.05. We compared the performances of each 
model trained by the complete dataset and the dataset with 
the non-significant features removed.

Hyperparameter tuning

A diagram of the process of hyperparameter tuning of the 
LightGBM model is shown in Figure 1. Lambda_l1 and 
lambda_l2 are 2 hyperparameters in the LightGBM model. 
There are 100 dots in Figure 1 and each dot represents 
a trial, the location of which shows the corresponding 
lambda_l1 and lambda_l2 values. The shade of blue indicates 
the range of the objective values for the trials. In addition, 
it can be observed that the lighter the color, the denser the 
dots. Bayesian optimization balances between exploration 
(hyperparameter configuration for which the objective 
value is most uncertain) and exploitation (hyperparameter 
configuration expected close to the optimum). That is to 
say, some of the trials might concentrate on hyperparameter 
values around the local minimum, while others would try 
new hyperparameter configurations. Therefore, in the area 
with low objective value, the dots would assemble, and the 
hyperparameters near the dots with high value would not be 
selected to be trialed.

The best hyperparameters found in the hyperparameter 
tuning processes of XGBoost, CatBoost, LightGBM, 
GBDT, and RF are shown in Table 2. The descriptions of all 
training parameters are displayed in Table S1.

Model performance

In Table 3 and Figure 2, we summarized the performance 
of 8 models in terms of ROC, AUC, accuracy, logistic loss, 
and precision-recall curve, which are the average results of 
5-fold cross-validation. The 8 models could be sorted from 
the best to the poorest as follows: XGBoost > LightGBM > 
CatBoost > GBDT > ANN > RF > NB > SVM, where the 
three variants of GBDT performed with little difference, 
and the curves in both graphs (Figure 2) almost coincided. 
Moreover, the performances of each model trained by the 
complete dataset were better than those trained by the 
dataset with the non-significant features removed. After 

https://optuna.org/
https://optuna.org/
https://shap.readthedocs.io/
https://cdn.amegroups.cn/static/public/JTD-21-1107-Supplementary.pdf
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Table 1 Selected clinicopathological features from the SEER dataset

Features
Number of 
categories

Top categorya Frequencyb P valuec

Categorical features

Race recode (W, B, AI, API) 4 White 8,941 0.156

Sex 2 Male 8,441 0.232

Primary site-labelled 7 C15.5-lower third of esophagus 6,941 0.841

Diagnostic confirmation 4 Positive histology 10,508 0.857

ICD-O-3 Hist/behav 47 8140/3: adenocarcinoma, NOS 5,955 <0.001

Derived AJCC stage group, 7th ed (2010–2015) 11 IV 3,171 <0.001

Derived AJCC T, 7th ed (2010–2015) 11 T3 4,270 <0.001

Derived AJCC N, 7th ed (2010–2015) 4 N1 4,729 <0.001

Derived AJCC M, 7th ed (2010–2015) 2 M0 7,417 <0.001

RX Summ—Surg Prim Site (1998+) 4 None 7,364 <0.001

RX Summ—Scope Reg LN Sur (2003+) 8 None 7,398 <0.001

RX Summ—Surg Oth Reg/Dis (2003+) 6 None; diagnosed at autopsy 10,265 0.749

SEER combined mets at DX-bone (2010+) 2 No 9,832 <0.001

SEER combined mets at DX-brain (2010+) 2 No 10,420 <0.001

SEER combined mets at DX-liver (2010+) 2 No 9,170 <0.001

SEER combined mets at DX-lung (2010+) 2 No 9,643 <0.001

CS tumor size (2004–2015) 170 50 1,193 <0.001

CS lymph nodes (2004–2015) 19 0 4,132 <0.001

CS mets at DX (2004–2015) 6 0 7,417 <0.001

Sequence number 8 One primary only 7,737 <0.001

Reason no cancer-directed surgery 7 Not recommended 6,215 <0.001

5-year survival 2 Dead 9,048

Numerical features

Age recode with single ages and 85+ 66.71d 10.89e [18, 85]f <0.001

Regional nodes examined (1988+) 8.66d 21.4e [0, 98]f <0.001

Regional nodes positive (1988+) 70.87d 43.38e [0, 98]f <0.001
a, the category with the highest frequency; b, the corresponding frequency; c, χ2 test; d, these data represent the mean; e, these data 
represent the Std.; f, these data represent the [range]. SEER, Surveillance, Epidemiology, and End Results.

overall consideration of the several performance metrics, 
the XGBoost and the complete dataset were chosen to build 
the final model to predict the 5-year survival status.

Feature importance

SHAP values represent a feature’s responsibility for a 

change in the model output. Therefore, as depicted in 
Figure 3, the features with larger mean SHAP value were 
more important in model prediction, where “Reason no 
cancer-directed surgery” was the most important.

Because 5-year survival status was processed by label 
encoding, where “Alive” was labelled as “0” and “Dead” 
as “1”, the positive SHAP value increased the probability 
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of death, as the higher the value, the higher the risk, 
and vice versa. Therefore, from Figure 4, high values of 
“Reason no cancer-directed surgery” and “RX Summ—
Surg Prim Site (1998+)” increased the probability of “Alive”. 
Specifically, for the categorical feature “Reason no cancer-
directed surgery”, category “Not recommended” with 6,215 
cases was labelled as “1”, and “Surgery performed” with 
3,224 cases was labelled as “6”, indicating that “Surgery 
performed” increased the probability of “Alive”, and “Not 
recommended” was likely to lead to “Dead”. For the 
categorical feature “RX Summ—Surg Prim Site (1998+)”, 
category “None” with 7,364 cases was labelled as “0”, and 
category “Site-specific codes-resection” with 3,171 cases 
was labelled as “2”, demonstrating that “Site-specific codes-
resection” increased the probability of “Alive”. Moreover, 
from the aspect of age, the older the age, the higher the risk 
of death. For “Derived AJCC stage group, 7th ed (2010–
2015) T and M”, the higher the stage, the higher the risk of 
death.

Unlike the previous features, the color distribution was 
irregular for “Regional nodes positive” and “CS tumor 
size”, implying that the values of the features were not 
correlated linearly with the SHAP values. To explore the 
reason, we plotted the SHAP values of these two features 
versus the values of the features for all participants in 
the dataset (Figure 5). Values 95–99 for “Regional nodes 
positive” refer to cases where no regional nodes were 
removed or the number of nodes was unknown/not stated. 
Values 991–995 for “CS tumor size” refer to cases where 
tumor size was described as less than 1 to 5 cm, respectively. 
Value 990 means microscopic focus or foci only. If no 

size of focus is given, values 996–998 indicate site-specific 
codes where needed, and value 999 indicates unknown. 
The figures displayed that, except for the special values 
mentioned above, the higher the values of the features, the 
higher risk of death.

Discussion

This study attempted to use ML to predict the 5-year 
survival status of EC patients, and successfully constructed 
a 5-year survival  status model of EC. The model 
demonstrated good predictive performance through routine 
clinical data.

In this study, discrimination of the performance of the 
three newly developed variants of GBM showed that they 
were similar, with little variability in ROC, precision-recall 
curve (Figure 2), and three other metrics (Table 3). They 
outperformed other models, including the ANN used by 
Sato et al. (4). The prediction result (AUC =0.88) in the 
study of Sato et al. (4) was higher than that in this paper, 
but there were more features (199 features) used to train 
the model, providing more information and thus better 
prediction of outcomes. Besides, the precision-recall curve 
showed that the three variants are effective in predicting 
the imbalanced dataset; however, NB and SVM had poor 
performance in the class accuracy of the small number of 
samples caused by the imbalance of sample number.

Furthermore, the fact that the three newly developed 
variants of GBM trained by the complete dataset performed 
better than those trained by the dataset with non-significant 
features removed implied that for these three algorithms, 

1

0.01

100 μ

1 μ

10 n

0.35

0.345

0.34

0.335

0.33

0.325

0.32

Ia
m

bd
a 

I2

Iambda I1
100 n10 n 1 μ 10 μ 100 μ 0.001 0.01 0.1 1 10

Objective value

Contour plot

Figure 1 An example of hyperparameter tuning of the LightGBM model. There are 100 dots in the picture. Each dot represents a trial. 
The shade of blue indicates the range of the objective value. The objective function is defined as the average logistic loss of the 5-fold cross-
validation of the LightGBM model.
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the more comprehensive the information, the better the 
model will perform, and redundant information does not 
interfere with model prediction. Cross-validation was 
used to avoid overfitting, which significantly improves the 
classification accuracy and generalization capability. The 
hyperparameter tuning based on Bayesian optimization 
is a more efficient method compared with grid search 
and random search, and is a necessary process before 
constructing the final model, which is able to markedly 
improve the model performance.

Interpreting a model’s prediction outcome is very 

important in many application scenarios for ML. The 
trade-off between accuracy and interpretability of a model’s 
output is always a problem for researchers in many fields. 
Both SHAP and Local Interpretable Model-agnostic 
Explanations (LIME) are popular approaches for model 
interpretability. The LIME approach builds sparse linear 
models around each prediction to explain how the black 
box model works in that local vicinity. Lundberg and 
Lee showed that SHAP provides the only guarantee of 
accuracy and consistency, while LIME is actually a subset 
of SHAP but lacks the same properties (21). However, 

Table 2 Results of hyperparameter tuning

Classifier Training parameters Searching space Best parameters

XGBoost n_estimators [100, 10,000] 1,169

learning_rate [0.001, 0.5] 0.1

max_depth [1, 10] 5

subsample [0.25, 0.75] 0.62

colsample_bytree [0.05, 0.5] 0.49

colsample_bylevel [0.05, 0.5] 0.41

CatBoost n_estimators [100, 10,000] 1,642

learning_rate [0.001, 0.5] 0.1

max_depth [0, 5] 3

reg_lambda [1e−8, 10] 0.3455

LightGBM n_estimators [100, 10,000] 3,248

learning_rate [0.001, 0.5] 0.0316

max_depth [1, 10] 5

num_leaves [1, 300] 16

lambda_l1 [1e−8, 10] 0.52

lambda_l2 [1e−8, 10] 0.2

GBDT n_estimators [100, 5,000] 1,340

learning_rate [0.001, 0.5] 0.0023

max_depth [1, 20] 11

max_leaf_nodes [2, 100] 23

subsample [0.25, 0.75] 0.27

RF n_estimators [100,10,000] 200

max_depth [1, 10] 6

min_samples_split [2, 11] 2

min_samples_leaf [1, 10] 4

GBDT, gradient boosting decision trees; RF, random forest.
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SHAP is an exhaustive method which considers all possible 
predictions for an instance using all possible combinations 
of inputs, and is therefore time consuming compared with 
LIME. Since the sample size of 10,588 is a small dataset 
in data mining fields, SHAP was used in this paper. The 
interpretations provided by SHAP are presented as follows.

Access to surgical treatment is an important factor in 
model prediction. Compared with patients with stage I–III 
EC who did not undergo surgery, those treated with surgery 

had better long-term survival (22). In recent years, with the 
development of neoadjuvant therapy, many patients with 
locally advanced EC have gained the opportunity of surgical 
treatment. A previous study showed that an en bloc resection 
at the original operation site is the most significant 
predictor of prolonged survival (23).

According to the model, the earlier the tumor stage 
lowers the predicted probability of death. On the contrary, 
if the tumor stage is late, it could easily lead to death. 

Table 3 Model performance using 8 algorithms

Classifier

The complete dataset  
(24 features)

The dataset with the non-significant features removed  
(19 features)

AUC Accuracy Logistic loss AUC Accuracy Logistic loss

XGBoost 0.852 0.875 0.301 0.845 0.871 0.307

LightGBM 0.850 0.875 0.302 0.844 0.870 0.308

CatBoost 0.849 0.874 0.304 0.843 0.871 0.308

GBDT 0.846 0.875 0.307 0.842 0.871 0.311

ANNa 0.844 0.871 0.308 0.833 0.869 0.316

RF 0.838 0.865 0.319 0.838 0.865 0.319

NB 0.833 0.769 1.766 0.833 0.769 1.766

SVM 0.789 0.855 0.364 0.789 0.855 0.363
a, the ANN structure with the best AUC is n-4-4-1. AUC, area under the receiver operating characteristic curve; GBDT, gradient boosting 
decision trees; RF, random forest; NB, naive Bayes; ANN, artificial neural networks; SVM, support vector machines.
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Lymph node metastasis is a key factor in evaluating the 
prognosis of patients with EC (24). Studies have shown that 
extensive lymph node dissection is associated with improved 
survival in patients with stage II–III esophageal squamous 
cell carcinoma (25). Under the premise of sufficient lymph 
node dissection, the ratio of the number of positive lymph 
nodes to the total number of lymph nodes has been used 
as an important indicator to predict the prognosis of EC in 
many studies. Notably, as part of tumor staging, N status 
did not contribute significantly to predicting outcomes 
compared to T and M. The possible reason is that there 
is a linear relationship between lymph node metastasis 
and tumor stage. The effect of lymph node metastasis on 
outcome prediction was reflected by tumor stage. According 
to the results, tumor staging played an important role in 

predicting 5-year survival.
Age was one of the most important factors in model 

prediction. The prevalence of EC is higher in elderly 
patients, and many studies have shown that the increase 
in age is associated with the decrease of 1- and 5-year 
survival (26,27). For patients with locally advanced EC, 
postoperative survival was negatively correlated with age.

The main limitations of this study are as follows. Some 
critical factors that are strong predictors of survival and 
patient outcomes are unavailable in the SEER database, 
such as surgical methods postoperative complications, and 
more importantly, radiation and chemotherapy information. 
Some technical advances in surgical methods such as 
preoperative simulation, robot-assisted thoracoscopic 
esophagectomy, and intraoperative real-time navigation 
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may decrease the morbidity and mortality rate of surgery 
for EC and hopefully improve oncological outcomes (28). 
Susceptibility to a variety of complications is also one of 
the characteristics of EC. Anastomotic leaks, chyle leaks, 
cardiopulmonary complications, and later functional 
issues after esophagectomy may result in long-term 
sequelae and even death (29). The effect of radiotherapy 
and chemotherapy on patients with EC is still a research 
hotspot. For locally advanced esophagogastric junction 
patients, neoadjuvant chemoradiotherapy results in a better 
survival rate than neoadjuvant chemotherapy (30). At the 
same time, radiotherapy or neoadjuvant chemoradiotherapy 
may also increase the incidence of cardiac and pulmonary 
complications (31,32). These factors have a negative impact 
on the accuracy of the prediction. The introduction of more 
features for analysis will be crucial for building effective 
prediction models in the future. If the features mentioned 
above become available, the model should be trained 
from scratch, including the process of feature selection, 
hyperparameter tuning, and model evaluation.
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Table S1 The parameter descriptions of the training parameters of XGBoost, CatBoost, LightGBM, GBDT, and RF

Classifier Training parameters Parameter description

XGBoost n_estimators The maximum number of trees that can be built when solving ML problems

learning_rate Step size shrinkage used in update to prevent overfitting. After each boosting step, we can 
directly get the weights of new features, and learning_rate shrinks the feature weights to make 
the boosting process more conservative

max_depth Maximum depth of a tree. Increasing this value will make the model more complex and more 
likely to overfit

subsample Subsample ratio of the training instances. Setting it to 0.5 means that XGBoost would randomly 
sample half of the training data prior to growing trees. This will prevent overfitting. Subsampling 
will occur once in every boosting iteration

colsample_bytree colsample_bytree is the subsample ratio of columns when constructing each tree. Subsampling 
occurs once for every tree constructed

colsample_bylevel colsample_bylevel is the subsample ratio of columns for each level. Subsampling occurs once 
for every new depth level reached in a tree. Columns are subsampled from the set of columns 
chosen for the current tree

CatBoost n_estimators Same as n_estimators in XGBoost

learning_rate Same as learning_rate in XGBoost

max_depth Same as max_depth in XGBoost

reg_lambda Coefficient at the L2 regularization term of the cost function. Increasing this value will make the 
model more conservative. Normalized to the number of training examples

LightGBM n_estimators Same as n_estimators in XGBoost

learning_rate Same as learning_rate in XGBoost

max_depth Same as max_depth in XGBoost

num_leaves Maximum tree leaves in the resulting tree

lambda_l1 L1 regularization term on weights. Increasing this value will make the model more conservative. 
Normalized to the number of training examples

lambda_l2 Same as reg_lambda in CatBoost

GBDT n_estimators Same as n_estimators in XGBoost

learning_rate Same as learning_rate in XGBoost

max_depth Same as max_depth in XGBoost

max_leaf_nodes Same as num_leaves in LightGBM

subsample Same as subsample in XGBoost

RF n_estimators Same as n_estimators in XGBoost

max_depth Same as max_depth in XGBoost

min_samples_split The minimum number of samples required to split an internal node

min_samples_leaf The minimum number of samples required to be at a leaf node

GBDT, gradient boosting decision trees; RF, random forest; ML, machine learning.

Supplementary


