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Background: In recent years, spectral computed tomography (CT) has shown excellent performance in 
the diagnosis of ground-glass nodules (GGNs) invasiveness; however, no research has combined spectral 
multimodal data and radiomics analysis for comprehensive analysis and exploration. Therefore, this study 
goes a step further on the basis of the previous research: to investigate the value of dual-layer spectral CT-
based multimodal radiomics in accessing the invasiveness of lung adenocarcinoma manifesting as GGNs.
Methods: In this study, 125 GGNs with pathologically confirmed preinvasive adenocarcinoma (PIA) 
and lung adenocarcinoma were divided into a training set (n=87) and a test set (n=38). Each lesion was 
automatically detected and segmented by the pre-trained neural networks, and 63 multimodal radiomic 
features were extracted. The least absolute shrinkage and selection operator (LASSO) was used to select 
target features, and a rad-score was constructed in the training set. Logistic regression analysis was conducted 
to establish a joint model which combined age, gender, and the rad-score. The diagnostic performance of 
the two models was compared by the receiver operating characteristic (ROC) curve and precision-recall 
curve. The difference between the two models was compared by the ROC analysis. The test set was used to 
evaluate the predictive performance and calibrate the model. 
Results: Five radiomic features were selected. In the training and test sets, the area under the curve (AUC) 
of the radiomics model was 0.896 (95% CI: 0.830–0.962) and 0.881 (95% CI: 0.777–0.985) respectively, and 
the AUC of the joint model was 0.932 (95% CI: 0.882–0.982) and 0.887 (95% CI: 0.786–0.988) respectively. 
There was no significant difference in AUC between the radiomics model and joint model in the training 
and test sets (0.896 vs. 0.932, P=0.088; 0.881 vs. 0.887, P=0.480).
Conclusions: Multimodal radiomics based on dual-layer spectral CT showed good predictive performance 
in differentiating the invasiveness of GGNs, which could assist in the decision of clinical treatment strategies.
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Introduction

With the  widespread use  of  low-dose  computed 
tomography (LDCT) for lung screening, the detection 
rate of pulmonary ground-glass nodules (GGNs) has 
increased significantly (1). GGNs include pure ground-glass 
nodules (pGGNs) without solid components and mixed 
ground-glass nodules (mGGNs) with solid components 
(2,3), which are mainly characterized by hazy increased 
density lung parenchyma but with the presentation of 
bronchial and vascular margins on computed tomography 
(CT). According to the new classification system for lung 
adenocarcinoma jointly released by the International 
Association for the Study of Lung Cancer, the American 
Thoracic Society, and the European Respiratory Society in 
2011, lung adenocarcinomas are classified into preinvasive 
adenocarcinoma (PIA), minimally invasive adenocarcinoma 
(MIA), and invasive adenocarcinoma (IA), with PIA 
being subdivided into atypical adenomatous hyperplasia 
(AAH) and adenocarcinoma in situ (AIS) (4). The current 
standard of clinical treatment for IA is still lobectomy, but 
for patients with PIA or MIA, segmentectomy or wedge 
resection can be selected in order to maintain the function 
of the lungs to a greater extent. Studies have shown that 
patients of AIS or MIA having received appropriate surgical 
resection have a disease-free survival rate of 100% or close 
to 100% (5-7), and the five-year survival rate of localized IA 
is 70–90% (8,9). But for cases of not having the appropriate 

treatment in time, the median survival time of early-
stage patients is only 13 months (10). However, excessive 
pneumonectomy can also cause unnecessary damage to 
the function of the lungs (11,12), so accurate preoperative 
differentiation of the invasiveness of GGNs is critical to 
the outcomes and survival rates. Studies have shown that 
the ratio of solid components is positively correlated with 
the malignancy of GGNs (13,14), but there are still 10.8% 
of pGGNs and 80.0% of ground-glass opacity (GGO)-
predominant mGGNs pathologically diagnosed as IA (15). 
As such, determining patient adenocarcinoma subtypes 
based on the ratio of solid components may be unreliable.

Currently, the determination of whether GGNs 
are invasive or not is a controversial and difficult issue. 
Pathological biopsy is invasive and hard to palpate, 
and the appearance of lesions on conventional CT is 
not absolutely correlated with malignant invasiveness 
(16,17). AAH, AIS, MIA, and IA may all manifest as 
pGGNs (13,18,19). Enhancement of nodules on contrast-
enhanced CT is generally considered to be associated with 
increased capillary perfusion and permeability (20,21), 
but it has a limited role in GGNs with deficient or few 
solid components (21). Compared with conventional CT, 
spectral CT can provide more modalities with quantitative 
imaging information which is helpful for diagnoses, such 
as iodine density (ID) map, effective atomic number (Zeff) 
map, electron density (ED) map, and virtual non-contrast 
(VNC) map. It has shown excellent performance in the 
qualitative diagnosis of tumors (e.g., pancreatic cancer, 
gastric cancer, breast cancer, etc.) in recent years (22-24). 
However, there are limited studies on using spectral CT 
to differentiate the invasiveness of GGNs. Promisingly, Yu  
et al. (25) found that CT value in virtual monoenergetic 130 
keV images at the venous phase could help to differentiate 
the preinvasive lesion group from the IA group of GGNs. 
Qiu et al. (26) found that the ED value could provide 
more useful information for the differential diagnosis 
of GGNs invasiveness. The previous studies suggested 
the effectiveness of spectral CT images in the diagnosis 
of GGNs invasiveness, however, these studies had not 
combined radiomics and spectral multimodal imaging. for 
a comprehensive analysis and investigation. Therefore, 
this study aimed to establish a diagnostic model of GGNs 
based on multimodal spectral CT images and radiomics 
to differentiate the invasiveness of GGNs and provide a 
basis for making rational clinical decisions. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://jtd.amegroups.com/article/

Highlight box

Key findings
•	 Spectral CT multimodal imaging combined with multimodal 

radiomics can be a non-invasive, robust, and reproducible 
method for the preoperative identification of GGNs invasiveness, 
which can help clinicians select the appropriate intervention and 
management for patients with pulmonary nodules before surgery. 

What is known and what is new?
•	 Spectral CT can help differentiate the invasiveness of lung 

adenocarcinoma presenting as ground-glass nodules.
•	 A multimodal radiomics model of dual-layer spectral CT was able 

to discriminate invasiveness of lung adenocarcinoma presenting as 
ground-glass nodules well.

What does this mean, and what should change now?
•	 For patients with ground-glass nodules on CT who are highly 

suspected clinically of lung adenocarcinoma, the multimodal 
radiomics model of dual-layer spectral CT should be used to 
predict their invasiveness before operation, which can be used to 
predict clinically. Advise on the choice of format.
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view/10.21037/jtd-22-1605/rc).

Methods

Study populations

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the Ethics Committee of Union Hospital, 
Tongji Medical College, Huazhong University of Science 
and Technology (No. 2020S363) and individual consent for 
this retrospective analysis was waived. Between May 2020 to 
May 2022, 352 patients who underwent contrast-enhanced 
lung scans on a dual-layer detector spectral CT (IQon, 
Philips Healthcare, Best, the Netherlands) at two hospital 
sites (Hospital 1: Main Campus, Hospital 2: West Campus) 
of the Union Hospital were retrospectively analyzed. 
The inclusion criteria in this study were as follows: (I) 
patients who had undergone complete surgery and were 
pathologically confirmed as AAH, AIS, MIA, or IA; (II) the 
maximum diameter ≤30 mm of nodules and ≤5 mm of solid 
components measured on lung window CT images with 
1 mm slice-thickness (4,19,27); (III) the interval between 
the latest dual-layer detector spectral CT examination and 
surgery were within one month. The exclusion criteria 
are as follows: (I) patients who received chemotherapy or 
radiotherapy before the latest CT examination (28); (II) 
patients who had undergone percutaneous lung nodule 
biopsy or with symptoms of hemoptysis or pulmonary 

infection before the latest CT examination. 
Among these 352 patients, 227 were excluded from this 

study because of nodules >30 mm in maximum diameter or 
solid components >5 mm in maximum diameter. Finally, 
125 GGNs out of 125 patients met the criteria; 87 GGNs 
from Hospital 1 were classified as the training set and  
38 GGNs from Hospital 2 were classified as the validation 
set (Figure 1). An overview of the research methodology is 
shown in Figure 2.

Spectral CT examination

The contrast-enhanced lung CT examinations were 
performed with a 64-section dual-layer detector spectral 
CT system. The detailed imaging parameters were as 
follows: 120 keV, 140–250 mA, 64×0.625 mm² collimation, 
a pitch of 0.984, rotation time of 0.27 seconds. All patients 
were injected with non-ionic iodinated contrast material 
with 350 mg/mL concentration (Iopamidol, Shanghai 
Bracco Sine Pharmaceutical, Shanghai, China) at a dose 
of 1.35 mL/kg body weight and a contrast injection rate 
of 3.0 mL/s by using a power injector (OptiVantage, Tyco 
Healthcare, USA). All scans started 40 seconds after the 
beginning of the contrast injection. After scanning, two 
conventional images were reconstructed using the iDose 
reconstruction algorithm, and Spectral Base Images 
(SBI) was reconstructed using the spectral reconstruction 
algorithm (25). All images were reconstructed with a section 

Figure 1 Flowchart shows the study population. CT, computerized tomography; AAH, atypical adenomatous hyperplasia; AIS, 
adenocarcinoma in situ; MIA, minimally invasive adenocarcinomas; IA, invasive adenocarcinoma.

222 patients underwent spectral CT examination at 
Hospital 1 from May 2020 to May 2022 and were 
pathologically confirmed with AAH, AIS, MIA or IA

130 patients underwent spectral CT examination at 
Hospital 2 from May 2020 to May 2022 and were 
pathologically confirmed with AAH, AIS, MIA or IA

Training set (n=87) Test set (n=38)

Exclusion criteria
• Nodules >30 mm in maximum diameter or 

solid components >5 mm in maximum diameter (n=135)
• Received chemotherapy or radiotherapy before 

dual-layer spectral CT examination (n=0)
• Underwent percutaneous lung nodule biopsy or 

with symptoms of hemoptysis or pulmonary infection 
before dual-layer spectral CT examination (n=0)

• The interval between the most recent double-decker 
spectral CT and surgery was more than 1 month (n=0)

Exclusion criteria
• Nodules >30 mm in maximum diameter or solid 

components >5 mm in maximum diameter (n=92)
• Received chemotherapy or radiotherapy before 

dual-layer spectral CT examination (n=0)
• Underwent percutaneous lung nodule biopsy or with 

symptoms of hemoptysis or pulmonary infection before 
dual-layer spectral CT examination (n=0)

• The interval between the most recent double-decker 
spectral CT and surgery was more than 1 month (n=0)

https://jtd.amegroups.com/article/view/10.21037/jtd-22-1605/rc
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thickness of 1 mm, a section increment of 1 mm, and a 
smooth filter. The reconstructed images were analyzed with 
a dedicated workstation (IntelliSpace Portal V10, Philips 
Healthcare).

Multimodal image preprocessing and feature extraction

Considering that the density of GGNs ranged mainly 
between −750 and −350 HU on conventional CT, 
normalizing the image directly will reduce the density 
resolution of the GGNs lesion area (29). Therefore, 
the Digital Imaging and Communications in Medicine 
(DICOM) images were f irst  subjected to density 
normalization, and the window width and window level 

were normalized to 1,600 and −600 HU, followed by 
0–1 normalization to reduce the effects of contrast and 
brightness on the grayscale values of the GGNs (30,31). 
The spectral multimodal images (including ID, VNC, ED, 
and Zeff) were directly processed with 0–1 normalization. 
Then, the 3D-Region based Convolutional Neural 
Network (3D-RCNN) pre-trained network was used for the 
automatic detection of lung nodules; then, the 3D sphere 
representation-based center-points matching detection 
network (SCPM-Net) pre-trained convolutional neural 
network was used for the automatic segmentation of target 
nodules (32,33).

Radiomic features were extracted from each modal 
data (ID, VNC, ED, and Zeff) using the PyRadiomics  

Figure 2 Overview of the study methodology. SBI, split bregman iteration; RPN, region proposal network; SCPM, sphere representation-
based center-points matching; VNC, virtual non-contrast map; LASSO, least absolute shrinkage and selection operator; ROC, receiver 
operating characteristic; PR, precision recall; DCA, decision curve analysis.
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package (34). Extracted features include morphological 
features and first-order features, details of which are 
available in Pyradiomics documentation (http://Pyradiomics.
readthedocs.io/en/latest/). A detailed list of radiomic features 
was presented in the Appendix 1.

Feature selection and model construction

The optimal feature selection was performed using a 
machine-learning least absolute shrinkage and selection 
operator (LASSO) regression method with cross-validation. 
Then, the logistic-based rad-score model (radiomics model) 
was built based on the established optimal feature subsets 
of the training dataset. In addition, the clinical features that 
differed significantly between invasive and non-invasive 
GGNs were selected to combine with rad-score to develop 
a diagnostic model (joint model). Finally, the receiver 
operating characteristic (ROC) areas under the curve (AUC) 
of the two models were performed and compared.

Statistical analysis

Normally distributed continuous variables on the data set 
were compared using the two-sample t-test, non-normally 
distributed continuous variables were compared using the 
Wilcoxon rank sum test, and categorical variables were 
compared using the chi-square test or Fisher’s exact test. 
Correlations between features were compared by Spearman 
correlation. The area under the ROC curve (AUC) and 
the precision recall (PR) curve were used to evaluate model 
performance on the training and test sets, and calculate the 
odds ratio (OR) values of each selected variable through 
logistic regression. The calibration plots were generated to 
visualize the consistency of the models. The decision curve 
analysis (DCA) was used to calculate the net benefit of the 
model under different threshold probabilities. All statistical 
analyses from this study were performed using SPSS 26.0, R 
3.5.1, and Python 3.5.6. Two-tailed P value <0.05 indicated 
statistical significance.

Results

Patients

A total of 125 GGNs were detected in 125 patients in this 
study. Among the 125 GGNs, 45 were IA, 43 were MIA and 
37 were PIA (35 were AIS and 2 were AAH). The clinical 
characteristics of the 125 patients are summarized in Table 1.

Feature selection and model construction

Among these features, this study uses the LASSO logistic 
regression model for dimensionality reduction, and finally, 
5 features with non-zero coefficients were selected to 
establish the rad-score (Figure 3A,3B):

Rad-score 1.0303 1.1284 a_ED_original_firstorder_90Percentile
0.7753 a_ID_original_firstorder_Entropy
0.7777 p_original_shape_Maximum2DDiameterSlice
0.2131 v_ED_original_firstorder_90Percentile
0.321

= − + ×
− ×
+ ×
+ ×
+ 8 v_Zeff_original_firstorder_Uniformity×

	
[1]

a_ED_original_firstorder_90Percentile comes from 
the electron cloud density at the arterial phase, a_
ID_original_f i rs torder_Entropy comes from the 
iodine map at the arterial phase, p_original_shape_
Maximum2DDiameterSlice comes from the plain phase, 
v_ED_original_firstorder_90Percentile comes from the 
electron cloud density at the venous phase, and v_Zeff_
original_firstorder_Uniformity comes from the effective 
atomic number at the venous phase. The above features 
were significantly different between IA and PIA/MIA 
groups (Table 2).

The correlations between the selected multimodal 
radiomics features are shown in Figure 4, and the correlation 
coefficients r between the features are all less than 0.8. The 
OR value of the rad-score was 2.718 (95% CI: 1.807–4.089, 
P<0.001), and the AUC of the radiomics model was 0.896 
(95% CI: 0.830–0.962) and 0.881 (95% CI: 0.777–0.985) in 
the training and test sets, respectively (Figure 5). Then, the 
two variables of age and gender with significant differences 
between groups and rad-score were incorporated into the 
logistic regression to construct a model (joint model), and 
the OR values of age, gender, and rad-score were 7.922 
(95% CI: 1.671–37.588, P=0.009), 10.181 (95% CI: 1.955–
53.008, P=0.006), and 534.105 (95% CI: 34.598–7,794.555, 
P<0.001). The AUC of the joint model was 0.932 (95% 
CI: 0.882–0.982) and 0.887 (95% CI: 0.786, 0.988) in the 
training and test sets, respectively. Comparing the AUCs of 
the radiomics model and the joint model in the training and 
test sets, there was no significant difference (0.896 vs. 0.932, 
P=0.088; 0.881 vs. 0.887, P=0.480).

The calibration curves of training and test sets showed 
that both the radiomics model and joint model had good 
additive trends; the radiomics model showed a better linear 
trend in the test set (Figure 6). The area under the PR 
curves of the training and test sets of the radiomics model 
was 0.896 and 0.881, and the area under the PR curve of 

http://Pyradiomics.readthedocs.io/en/latest/
http://Pyradiomics.readthedocs.io/en/latest/
https://cdn.amegroups.cn/static/public/JTD-22-1605-supplementary.pdf
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Table 1 Demographic and clinical characteristics of all patients

Variable PIA or MIA (n=80) IA (n=45) P value

Age (year), n (%) <0.001*

<53 37 (29.6) 20 (16.0)

≥53 43 (34.4) 25 (20.0)

Gender, n (%) 80 (64.0) 45 (36.0) <0.001*

Male 14 (17.5) 21 (46.7)

Female 66 (82.5) 24 (53.3)

Smoke, n (%) 5 (6.3) 6 (13.3) 0.201

History of malignant tumor or lung cancer family history, n (%) 4 (5.0) 2 (4.4) 1.000

Chronic obstructive pulmonary disease, n (%) 0 1 (2.2) 0.360

Tuberculosis, n (%) 0 1 (2.2) 0.360

Occupational exposure, n (%) 1 (1.3) 0 1.000

Lesion location, n (%) 0.556

Left upper lobe 26 (32.5) 13 (28.9)

Left lower lobe 7 (8.8) 4 (8.9)

Right upper lobe 32 (40.0) 15 (33.3)

Right middle lobe 5 (6.3) 2 (4.4)

Right lower lobe 10 (12.5) 11 (24.4)

P values are a comparison between participants with PIA or MIA and IA groups. *, P value <0.05. PIA, adenocarcinoma in situ and atypical 
adenomatous hyperplasia; IA, invasive adenocarcinoma; MIA, minimally invasive adenocarcinoma. 

Figure 3 Radiomics feature selection using LASSO. (A) Mean square error of each fold for the LASSO model. (B) LASSO path plot of the 
model in the training cohort. LASSO, least absolute shrinkage and selection operator; CV, cross validation; cvm, cross validation model.
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the joint model was 0.932 and 0.887 (Figure 7). The area 
under the PR curve for the joint model training set and 
test set was 0.932 and 0.887 (Figure 7). The analysis of the 
decision curves shows that when the threshold probability 
was between 0 and 0.70, the net gain of the model in both 
the training and test sets was greater than that of the “all” 
and “none” scenarios (Figure 8).

Discussion

Radiomics can extract high-throughput features and 
detect tumor heterogeneity, which can compensate for the 
drawbacks of conventional imaging diagnosis (35,36). The 
first-order features selected in this study are calculated 
from the pixel grayscale distribution of the original image. 
Compared with other radiomics features, the first-order 
features are more interpretable and can directly reflect 
the information of the image itself. At the same time, the 
application value of combined spectral CT multimodal 
imaging and multimodal radiomics was also taken into 
consideration in determining the invasiveness of GGNs. 
This study found that the constructed radiomics model 
and joint model showed ideal performance, and the AUCs 
in the training set were 0.896 and 0.932, respectively. The 
calibration curve showed that the probability predicted 
by the rad-score of the training set and the test set were 
more consistent with the actual outcome, and the area 
under the PR curve also showed that the model had a good 
discriminating ability and diagnostic effect. In a previous 
study, Fan et al. (37) found that radiomics features were 
better independent predictors of invasive GGNs than 
focal CT values and radiological signatures. Zhu et al. (38) 
selected 16 radiomic features, and the AUC of the radiomics 
model were 0.828. However, the predictive accuracy of their 
diagnostic models was lower than the results of this study, 
and all the above studies used conventional CT to conduct 
the research.

This study included 63 spectral CT multimodal 
radiomics features, and finally selected the 5 multimodal 

Table 2 The value of the selected radiomic features

Variable PIA or MIA IA P value

a_ED_original_firstorder_90Percentile 47.76±13.28a 61.53±14.90b <0.001*

a_ID_original_firstorder_Entropy 3.99±0.88b 3.47±0.54b <0.001*

p_original_shape_Maximum2DDiameterSlice 9.92±3.69b 14.51±4.03b <0.001*

v_ED_original_firstorder_90Percentile 45.48±14.49b 61.67±15.60b <0.001*

v_Zeff_original_firstorder_Uniformity 0.06±0.02b 0.08±0.03a 0.002*
a, normally distributed data is represented by mean ± SD; b, skewed distributed data is represented by median ± IQR. *, P value <0.05. 
a_ED_original_firstorder_90Percentile, the electron cloud density at the arterial phase; a_ID_original_firstorder_Entropy, the iodine map 
at the arterial phase; p_original_shape_Maximum2DDiameterSlice, the plain phase; v_ED_original_firstorder_90Percentile, the electron 
cloud density at the venous phase; v_Zeff_original_firstorder_Uniformity, the effective atomic number at the venous phase; SD, standard 
deviation; IQR, interquartile range; PIA, adenocarcinoma in situ and atypical adenomatous hyperplasia; IA, invasive adenocarcinoma; MIA, 
minimally invasive adenocarcinoma.

Figure 4 Correlation coefficient figure describing the correlation 
between radiomic features, expressed as Spearman’s correlation 
coefficient r. Only radiomic features for which a significant 
association (P<0.05) was observed are shown. Correlations are 
colored according to the color bar shown on the right.
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Figure 5 Comparison of ROC curves for the two models in the training (A) and testing (B) cohort. ROC, receiver operating characteristic.

Figure 6 Calibration curves of the radiomics model in the training (A) and testing (B) cohort. the diagonal dashed line represents the ideal 
assessment, while the solid and dashed lines represent the performance for corrected and apparent bias, respectively, the closer the fit to the 
diagonal dashed line, the better the evaluation. 

Figure 7 Precision recall curves of the two models in the training (A) and testing (B) cohorts. PR, precision recall.
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Figure 8 Decision curves of the two models in the training (A) and testing (B) cohorts. The values on the y-axis represent net gain and the 
x-axis represents probability thresholds.

features described in the results section. No significant 
correlation was found between these features, and the r 
values were all below 0.8. Among these features, p_original_
shape_Maximum2DDiameterSlice represents the maximum 
diameter of the nodule, which has a significant positive 
correlation with the degree of tumor malignancy and has 
been reported in previous studies (39,40). a_ED_original_
firstorder_90Percentile (arterial phase electron cloud 
density map) and v_ED_original_firstorder_90Percentile 
(venous phase electron density map) were associated 
with the enhancement density of the lesion. Entropy is a 
measure of texture irregularity, while Uniformity reflects 
the distance of an image from a uniform distribution of gray 
levels, and they can reflect local tumoral heterogeneity in 
electron cloud density and effective atomic number maps. In 
a previous study, Qiu et al. (26) found that the AUC of the 
ED value for identifying benign and malignant pulmonary 
GGNs was 0.722, because the ED value may reflect the 
microstructure of the lesion. In another study, a combined 
model of lesion inhomogeneity on the enhanced iodine 
map, Zeff in the plain scan, the ED and ED-Zeff ratio in 
plain and enhanced phase was used to differentiate IA from 
MIA (41). This study is similar to the above-mentioned 
research, but the above-mentioned research focused on 
single-modality image data of spectral CT. In this study, 
the radiomics features of different modalities are connected 
in series for comprehensive analysis, which can not only 
compensate for the shortcomings of single-modal imaging 
technology but also can provide various information of 
lesions, then finally realize information complementation, 
and ensure that the prediction performance of the final 
model is more stable and reliable. On the other hand, 
although contrast-enhanced CT is not necessary, this study, 

as a valuable study, performed enhanced CT examination 
on patients with pulmonary GGN in accordance with the 
Chinese guidelines (42), and obtained enhanced CT data 
of the lungs that are difficult to obtain in other countries 
except China. It may be helpful for scholars who carry out 
similar research in the future.

In addition, Table 1 shows the demographic and clinical 
characteristics of all patients, and only age and gender 
were statistically different between groups. Therefore, this 
study also combined age and gender with the rad-score 
to construct a joint model. The joint model is better than 
the radiomics model in diagnostic performance, although 
there is no significant difference between the two models, 
suggesting that the rad-score plays a more important role 
in diagnosis, which is also evident in the OR value of the 
three variables. In the joint model, the OR value of the 
rad-score (OR =534.105) was higher than that of age (OR 
=7.922) and gender (OR =10.181). Nonetheless, age and 
gender also showed significant correlations with the degree 
of malignancy in the joint model. GGNs in older men are 
more likely to be IA, which is consistent with reports in the 
literature (43). In summary, the joint model achieved an 
AUC of 0.887 on the test set. DCA also showed that the 
joint model has good clinical value and can be used as an 
optimal diagnostic prediction model. 

However, this study has several limitations. First, this is a 
retrospective study with a small sample, and selection bias is 
inevitable. Therefore, the generalizability and reliability of 
the results may be limited. In the future, prospective studies 
with large samples are needed to confirm these findings. 
Second, the included clinical features are few, and the joint 
exploration of genes and metabolomics has not been carried 
out. More clinical features, such as serological examinations, 
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genetic information, etc., should be included in the follow-
up research to build a more complete predictive model of 
clinical features. Third, the number of smokers in the cases 
included in this study is small, more comprehensive cohort 
will be constructed to develop a more clinically valuable 
model in the future. Fourth, in this study, we have not yet 
evaluated the body mass index of the subjects. In future 
research work, we will include body mass index and other 
indicators to study the impact of overweight and obese 
patients on the diagnostic performance of images.

Conclusions

Spectral  CT mult imodal  imaging combined with 
multimodal radiomics can be a non-invasive, robust, and 
reproducible method for the preoperative identification 
of GGNs invasiveness, which can provide clinicians with 
more detailed information about disease risk assessment, 
intervention, and management.
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Supplementary

Appendix 1

a_ED_original_firstorder_10Percentile: 10th percentile of electron cloud density map at the arterial phase 
a_ED_original_firstorder_90Percentile: 90th percentile of electron cloud density map at the arterial phase 
a_ED_original_firstorder_Entropy: Entropy of electron cloud density map at the arterial phase
a_ED_original_firstorder_Kurtosis: Kurtosis of electron cloud density map at the arterial phase
a_ED_original_firstorder_Mean: Mean of electron cloud density map at the arterial phase
a_ED_original_firstorder_Skewness: Skewness of electron cloud density map at the arterial phase
a_ED_original_firstorder_Uniformity: Uniformity of electron cloud density map at the arterial phase
a_ID_original_firstorder_10Percentile: 10th percentile of iodine density map at the arterial phase 
a_ID_original_firstorder_90Percentile: 90th percentile of iodine density map at the arterial phase 
a_ID_original_firstorder_Entropy: Entropy of iodine density map at the arterial phase
a_ID_original_firstorder_Kurtosis: Kurtosis of iodine density map at the arterial phase
a_ID_original_firstorder_Mean: Mean of iodine density map at the arterial phase
a_NIC: Mean of standardized iodine density map at the arterial phase
a_ID_original_firstorder_Skewness: Skewness of iodine density map at the arterial phase
a_ID_original_firstorder_Uniformity: Uniformity of iodine density map at the arterial phase
a_VNC_original_firstorder_10Percentile: 10th percentile of virtual non-contrast map at the arterial phase 
a_VNC_original_firstorder_90Percentile: 90th percentile of virtual non-contrast map at the arterial phase 
a_VNC_original_firstorder_Entropy: Entropy of virtual non-contrast map at the arterial phase
a_VNC_original_firstorder_Kurtosis: Kurtosis of virtual non-contrast map at the arterial phase
a_VNC_original_firstorder_Mean: Mean of virtual non-contrast map at the arterial phase
a_VNC_original_firstorder_Skewness: Skewness of virtual non-contrast map at the arterial phase
a_VNC_original_firstorder_Uniformity: Uniformity of virtual non-contrast map at the arterial phase
a_Zeff_original_firstorder_10Percentile: 10th percentile of effective atomic number map at the arterial phase 
a_Zeff_original_firstorder_90Percentile: 90th percentile of effective atomic number map at the arterial phase 
a_Zeff_original_firstorder_Entropy: Entropy of effective atomic number map at the arterial phase
a_Zeff_original_firstorder_Kurtosis: Kurtosis of effective atomic number map at the arterial phase
a_Zeff_original_firstorder_Mean: Mean of effective atomic number map at the arterial phase
a_Zeff_original_firstorder_Skewness: Skewness of effective atomic number map at the arterial phase
a_Zeff_original_firstorder_Uniformity: Uniformity of effective atomic number map at the arterial phase
p_original_shape_Flatness: Flatness at plain phase
p_original_shape_Maximum2DDiameterSlice: Maximum2DDiameterSlice at plain phase
p_original_shape_Sphericity: Sphericity at plain phase
p_original_shape_VoxelVolume: VoxelVolume at plain phase
p_original_firstorder_Mean: Mean at the plain phase
v_ED_original_firstorder_10Percentile: 10th percentile of electron cloud density map at the venous phase 
v_ED_original_firstorder_90Percentile: 90th percentile of electron cloud density map at the venous phase 
v_ED_original_firstorder_Entropy: Entropy of electron cloud density map at the venous phase
v_ED_original_firstorder_Kurtosis: Kurtosis of electron cloud density map at the venous phase
v_ED_original_firstorder_Mean: Mean of electron cloud density map at the venous phase
v_ED_original_firstorder_Skewness: Skewness of electron cloud density map at the venous phase
v_ED_original_firstorder_Uniformity: Uniformity of electron cloud density map at the venous phase
v_ID_original_firstorder_10Percentile: 10th percentile of iodine density map at the venous phase 
v_ID_original_firstorder_90Percentile: 90th percentile of iodine density map at the venous phase
v_ID_original_firstorder_Entropy: Entropy of iodine density map at the venous phase
v_ID_original_firstorder_Kurtosis: Kurtosis of iodine density map at the venous phase
v_ID_original_firstorder_Mean: Mean of iodine density map at the venous phase
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v_NIC: Mean of standardized iodine density map at the venous phase
v_ID_original_firstorder_Skewness: Kurtosis of iodine density map at the venous phase
v_ID_original_firstorder_Uniformity: Mean of iodine density map at the venous phase
v_VNC_original_firstorder_10Percentile: 10th percentile of virtual non-contrast map at the venous phase 
v_VNC_original_firstorder_90Percentile: 90th percentile of virtual non-contrast map at the venous phase 
v_VNC_original_firstorder_Entropy: Entropy of virtual non-contrast map at the venous phase
v_VNC_original_firstorder_Kurtosis: Kurtosis of virtual non-contrast map at the venous phase
v_VNC_original_firstorder_Mean: Mean of virtual non-contrast map at the venous phase
v_VNC_original_firstorder_Skewness: Skewness of virtual non-contrast map at the venous phase
v_VNC_original_firstorder_Uniformity: Uniformity of virtual non-contrast map at the venous phase
v_Zeff_original_firstorder_10Percentile: 10th percentile of effective atomic number map at the venous phase 
v_Zeff_original_firstorder_90Percentile: 90th percentile of effective atomic number map at the venous phase 
v_Zeff_original_firstorder_Entropy: Entropy of effective atomic number map at the venous phase
v_Zeff_original_firstorder_Kurtosis: Kurtosis of effective atomic number map at the venous phase
v_Zeff_original_firstorder_Mean: Mean of effective atomic number map at the venous phase
v_Zeff_original_firstorder_Skewness: Skewness of effective atomic number map at the venous phase
v_Zeff_original_firstorder_Uniformity: Uniformity of effective atomic number map at the venous phase


