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Introduction

Lung cancer is a leading cause of cancer deaths. In 2020, it 
caused approximately 1.8 million deaths (18% of the total 
cancer deaths) worldwide (1,2). Although current treatments 
for lung cancer include surgery, radiotherapy, chemotherapy, 
and targeted therapy, the overall prognosis is relatively poor 

due to tumor progression and metastasis (3,4). Extensive 
genomic screening has identified many oncogenes, such as 
epidermal growth factor receptor (EGFR), B-Raf (BRAF), 
and EMAP like 4-ALK (EML4-ALK) fusions, that could be 
used in targeted therapies (5,6); however, only 10–15% of 
patients benefit from these therapies, while the majority 
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of patients do not achieve satisfactory effects due to the 
emergence of resistance mechanisms (6-8). Hence, further 
exploration of the tumor landscape is critical in identifying 
new therapeutic targets.

Over the past decade, the impact of changes in the 
tumor microenvironment (TME) on tumor progression 
and metastasis has been increasingly recognized, as 
summarized by Altorki et al. (9). Drugs that target certain 
TME components, such as vascular endothelial growth 
factor (VEGF) and immune checkpoint proteins, have been 
clinically approved (1). Macrophages (Macs) represent one 
important and abundant type of innate immune component 
in the lung TME, and these cells are highly plastic and 
exhibit a variety of phenotypes (10), including the M1 
state (proinflammatory, classically activated, antitumor 
activity) and M2 state (anti-inflammatory, alternatively 
activated, protumor activity). Currently, the prognostic 
relevance of Macs in lung cancer remains unclear due to the 
heterogeneity of these phenotypes (11).

A cellular Mac transcriptome atlas is critical for studying 
the role of Macs in lung cancer progression and metastasis. 
Advances in single-cell RNA sequencing (scRNAseq) 
technology have provided us with a precise method for 
examining Macs. In this study, we systematically compared 
the changes in Mac subtypes across different stages of lung 
cancer progression and metastasis [paracancer normal lung 
samples (nLung), early-stage lung cancer samples (tLung), 
advanced-stage lung cancer samples (tL/B), normal lymph 
node samples (nLN), metastatic lymph node samples 
(mLN), and metastatic brain samples (mBrain)] and found 

a series of relevant features. Moreover, through ligand-
receptor (LR) analysis, we identified 9 interactions related 
to lung cancer progression and metastasis that could be 
used as potential therapeutic targets. We present this article 
in accordance with the MDAR reporting checklist (available 
at https://jtd.amegroups.com/article/view/10.21037/jtd-23-
1012/rc).

Methods

scRNAseq data preparation

scRNAseq matrix files were downloaded from the Gene 
Expression Omnibus (GEO) online database (www.ncbi.
nlm.nih.gov/geo) under accession number GSE131907 (12).  
RDS files of 10 nLung (“LUNG_N01”, “LUNG_N06”, 
“LUNG_N08”, “LUNG_N09”, “LUNG_N19”, “LUNG_
N20”, “LUNG_N28”, “LUNG_N30”, “LUNG_N31”, 
“LUNG_N34”) were reconstructed separately using 
CreateSeuratObject() function of R Seurat package V4 (13),  
which was fol lowed by an integrat ion step using 
FindIntegrationAnchors() and IntegrateData() functions. 
The RDS file of tLung was integrated from 11 lung tumor 
samples (“LUNG_T06”, “LUNG_T08”, “LUNG_T09”, 
“LUNG_T18”, “LUNG_T19”, “LUNG_T20”, “LUNG_
T25”, “LUNG_T28”, “LUNG_T30”, “LUNG_T31”, 
“LUNG_T34”). The RDS file of tL/B was integrated from 
4 lung tumor samples (“BRONCHO_58”, “EBUS_06”, 
“EBUS_28”, “EBUS_49”). The RDS file of nLN was 
integrated from 10 lymph node samples (“LN_01”, 
“LN_02”, “LN_03”, “LN_04”, “LN_05”, “LN_06”, 
“LN_07”, “LN_08”, “LN_11”, “LN_12”). The RDS 
file of mLN was integrated from 7 lymph node samples 
(“BRONCHO_11”, “EBUS_10”, “EBUS_12”, “EBUS_13”, 
“EBUS_15”, “EBUS_19”, “EBUS_51”). The RDS file of 
mBrain was integrated from 10 brain samples (“NS_02”, 
“NS_03”, “NS_04”, “NS_06”, “NS_07”, “NS_12”, 
“NS_13”, “NS_16”, “NS_17”, “NS_19”). The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

scRNAseq data analysis

Integrated RDS files (nLung, tLung, tL/B, nLN, mLN, 
and mBrain) were further scaled using the ScaleData() 
function, followed by a RunPCA() step (npcs =30). Different 
subgroups were clustered using the FindNeighbors() and 
FindClusters() functions with dims set to 30 and resolution 
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set to 1. All subgroups were visualized using the Uniform 
Manifold Approximation and Projection (UMAP) method 
through the RunUMAP() function. All the marker genes 
were identified using R Seurat FindAllMarkers() function 
with “test.use” set as “wilcox”, logfc.threshold set as “0.25” 
and min.pct set as “0.3”.

PseudoTime trajectory analysis

PseudoTime analysis was performed using the R monocle 
package (14). All myeloid components, including alveolar 
macrophages (aMacs), Macs, monocytes (Monos), and 
cycling macrophages (cMacs), from the 6 sample types were 
used as inputs. A Monocle file was generated using the 
newCellDataSet() function with the lowerDetectionLimit 
set to 0.5. The top 1,000 differentially expressed genes 
calculated by differetialGeneTest() were used in pseudoTime 
analysis. A heatmap representing gene expression patterns 
among the 3 states was illustrated using the plot_genes_
branched_heatmap() function.

Gene Ontology (GO) enrichment analysis

GO enrichment analysis was performed using the R 
clusterProfiler package (15). Input genes from each group 
were first transformed to “ENTREZID” using the bitr() 
function, followed by the enrichGO() function with “ont” 
set to “BP”, “pAdjustMethod” set to “BH”, “pvalueCutoff” 
set to “0.05”, and “qvalueCutoff” set to “0.2”.

LR interaction analysis

Cytokines were determined using annotations from The 
Human Protein Atlas (THPA, www.proteinatlas.org). 
Their corresponding membrane receptors were retrieved 
from the BioGrid (16) online database (www.thebiogrid.
org). Interaction intensity was calculated by multiplying 
the average expression values of ligands by the average 
expression values of receptors, and the intensity heatmap 
was visualized using the R ggplot2 package.

Statistical analysis

A Student t-test (unpaired) was performed among the 
comparisons in this study, and a P=0.05 was used as 
significance cutoff. For multiple comparisons, a one-way 
analysis of variance (ANOVA) analysis was performed, with 
“Bonferroni” corrections applied. All the statistical analysis 

was performed using R (version 3.6.3).

Results

Reconstruction of a single-cell atlas of lung cancer

To investigate the changes in Mac subtypes in the lung cancer 
TME, we retrieved scRNAseq data from the GEO online 
database under accession number GSE131907 (12). To avoid 
batch effects due to different sample origins, we performed 
separate scRNAseq integration on samples from different 
origins, and the results are summarized in Figure S1.

The following markers were used in the identification 
process of different subgroups: EPCAM/KRT19/KRT18/
CDH for epithelial cells; DCN/THY1/COL1A1/COL1A2 
for fibroblasts; PECAM1/CLDN5/FLT1/RAMP2 for 
endothelial cells; CD3D/CD3E/CD3G/TRAC for T 
lymphocytes; NKG7/GLNY/NCAM1/KLRD1 for NK 
cells; CD79A/IGHM/IGHG3/IGHA2 for B lymphocytes; 
LYZ/MARCO/CD68/FCGR3A for myeloid cells; KIT/
MS4A2/GATA2 for mast cells; OLIG1/OLIG2/MOG/
CLDN11 for oligodendrocytes. 

An atlas of 38,367 cells was constructed for 10 
paratumorous nLung (Figure S1A) and further clustered 
into 7 groups using markers from Kim et al. (12): 14,631 
myeloid cells (38.13%), 10,330 T and natural killer cells 
(T/NK, 26.14%), 3,304 epithelial cells (8.61%), 1,429 
fibroblasts (3.72%), 1,122 endothelial cells (2.92%), 997 
mast cells (2.60%), 545 B cells (1.42%) and 6,009 undefined 
cells [not applied (NA), 15.66%].

An atlas of 45,149 cells was constructed for 11 tLung 
(Figure S1B) and further clustered into 7 groups: 13,941 
T/NK cells (28.88%), 8,794 myeloid cells (19.48), 7,270 
epithelial cells (16.10%), 5,312 B cells (11.77%), 1,809 mast 
cells (4.01%), 1,654 fibroblasts (3.66%), 627 endothelial 
cells (13.89%) and 5,742 undefined cells (12.72%).

An atlas of 12,073 cells was constructed for 4 tL/B  
(Figure S1C) and further clustered into 6 groups: 6,582 
epithelial cells (54.52%), 2,627 T/NK cells (21.76%), 1,329 
myeloid cells (11.00%), 469 B cells (3.88%), 85 fibroblasts 
(0.70%), 18 endothelial cells (0.15%) and 963 undefined 
cells (7.98%).

An atlas of 37,466 cells was constructed for 10 nLN  
(Figure S1D) and further clustered into 3 groups: 19,478 T/
NK cells (52.02%), 10,584 B cells (28.26%), 1,288 myeloid 
cells (3.44%) and 6,096 undefined cells (16.28%).

An atlas of 21,479 cells was constructed for 7 mLNs 
(Figure S1E) and further clustered into 6 groups: 6,062 B 
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cells (28.22%), 5,442 myeloid cells (25.34%), 5,069 T/NK 
cells (23.60%), 3,053 epithelial cells (14.21%), 26 fibroblasts 
(0.12%), 8 endothelial cells (0.03%) and 1,819 undefined 
cells (8.47%).

An atlas of 29,060 cells was constructed for 10 mBrain 
(Figure S1F) and further clustered into 7 groups: 15,463 
epithelial cells (53.21%), 5,657 myeloid cells (19.47%), 
2,683 T/NK cells (9.23%), 1,311 B cells (4.51%), 508 mast 
cells (1.75%), 444 fibroblasts (1.53%), 159 endothelial cells 
(0.55%) and 2,835 undefined cells (9.76%).

To sum up, different cell-type patterns were examined in 
samples from different origins, such as increased numbers of 
epithelial cells during the progression of lung cancer (nLung 
< tLung < tL/B samples), suggesting the existence of 
more cancer cells as the tumor progresses. More epithelial 
cells were examined in mLN samples than nLN samples, 
which is expected for metastatic lymph node samples. Less 
myeloid cells were examined during the progression of 
lung cancer (nLung < tLung < tL/B samples), and more 
myeloid cells were examined in mLN samples than nLN 
samples, suggesting the recruitment of myeloid cells might 
contribute to the metastasis progress.

Identification of myeloid components

We further clustered myeloid cells from each atlas into 
5 different subgroups: Macs, aMacs, cMacs, Monos, and 
dendritic cells (DCs) (Figure 1A) based on the cell types 
described in Sorin et al. (17) and Travaglini et al. (18). 
The relative expression levels of representative markers 
used to identify each subgroup are illustrated in Figure 1B. 
Specifically, Macs were identified as CD14+/HLA-DRA+/
CD86+/CD163+/MRC1+; aMacs were identified as MARCO+/
FABP4+/MCEMP1+; cMacs were identified as MKI67+/
STMN1+/TOP2A+; Monos were identified as CD14+/
MRC1−/CD163−; and DCs were identified as CD1C+/
PTCRA+/CD1A+/CCR7+/LAMP3+.

Among myeloid cells in nLung samples, there were 
10,405 aMacs (71.12%), 1,369 Monos (9.36%), 499 Macs 
(3.41%), 408 cMacs (2.79%), 1,050 DCs (7.18%), and 900 
undefined cells (6.15%). Among myeloid cells from tLung 
samples, there were 2,514 aMacs (28.59%), 1,690 Monos 
(19.22%), 2,682 Macs (30.50%), 288 cMacs (3.24%), 975 
DCs (11.09%), and 645 unidentified cells (7.33%). Among 
myeloid cells from tL/B samples, there were 79 aMacs 
(0.90%), 550 Monos (6.25%), 528 Macs (6.00%), 79 DCs 
(0.90%), and 93 unidentified cells (1.06%). Among myeloid 
cells from nLN samples, there were 89 aMacs (6.91%), 67 

Monos (5.20%), 268 Macs (20.81%), 41 cMacs (3.18%), 288 
DCs (22.36%), and 535 unidentified cells (41.54%). Among 
myeloid cells from mLN samples, there were 792 aMacs 
(14.55%), 1,996 Monos (36.68%), 1,972 Macs (36.24%), 
326 cMacs (5.99%), 287 DCs (5.27%), and 69 unidentified 
cells (1.27%). Among myeloid cells from mBrain samples, 
there were 1,051 aMacs (18.58%), 1,287 Monos (22.75%), 
2,644 Macs (46.74%), 258 cMacs (4.56%), and 417 DCs 
(7.37%). Detailed numbers of each myeloid component in 
the different samples are shown in Figure 1C. 

Changes in myeloid components among different lung 
adenocarcinoma (LUAD) samples

To explore the changes in myeloid components in different 
LUAD samples, we first compared their ratios, and the 
results are shown in Figure 2A. Among these components, 
nLung samples had the highest ratio of aMacs; mBrain 
samples had the highest ratio of Macs; mLN and tL/B 
samples had higher ratios of Monos compared to these in 
other samples; nLN samples had the highest ratio of DCs. 

To explore the functional difference among these 
myeloid subgroups, we applied a set of Mac-specific markers 
from Cheng et al. (19) and compared their expressional 
status across different subgroups. The results are shown 
in Figure 2B. Subgroups from different origins were 
mainly grouped into 7 clusters: cluster1 contained mainly 
subgroups from mBrain samples (nLung.Macrophage, 
mBrain.Monocyte, mBrain.Macrophage, mBrain.Cycling.
Macrophage) featured with higher expression of NLRP3/
ISG15/LYVE1/C1QC/SPP1/CD80; cluster2 contained 
mainly aMac (tL/B.AMacrophage, tLung.AMacrophage, 
nLung.AMacrophage, nLung.Cycling.Macrophage) 
featured with higher expression of TNF/CD163/MRC1/
TGFB1/IL10; cluster3 contained mainly Macs from tumor 
samples (tLung.Macrophage, tLung.Cycling.Macrophage, 
tL/B.Macrophage) featured by higher expression of SPP1/
CD80/CD86/MRC1/TGFB1; cluster4 contained mainly 
Macs from mLN samples (mLN.AMacrophage, mLN.
Macrophage, mLN.Cycling.Macrophage) featured by 
higher expression of CX3CR1/FN1/NLRP3/ISG15/
TGFB1/IL10; cluster5 contained mainly Macs from nLN 
samples (tL/B.Cycling.Macrophage, nLN.Macrophage, 
nLN.AMacrophage, nLN.Monocyte) featured by higher 
expression of CD86; cluster6 contained mainly DCs (nLung.
DCs, tLung.DCs, nLN.Cycling.Macrophage, mLN.DCs, 
tL/B.DCs, nLN.DCs) featured by higher expression of 
GPNMB/INHBA/IL1B; cluster7 contained mainly Monos 

https://cdn.amegroups.cn/static/public/JTD-23-1012-Supplementary.pdf
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Figure 1 Myeloid subgroup characteristics across all sample types. (A) UMAP plots showing the distribution patterns of all myeloid 
subgroups. (B) Dot plots showing the relative expression status of representative markers. (C) Bar plots showing the number of cells in each 
subgroup across different sample types. nLung, paracancer normal lung samples; tLung, early-stage lung cancer samples; tL/B, advanced-
stage lung cancer samples; nLN, normal lymph node samples; mLN, metastatic lymph node samples; mBrain, metastatic brain samples; 
Mono, monocytes; Mac, macrophages; aMac, alveolar macrophages; cMac, cycling macrophages; DCs, dendritic cells; Unde, undefined; 
UMAP, Uniform Manifold Approximation and Projection. 
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(nLung.Monocyte, tL/B.Monocyte, mBrain.AMacrophage, 
mBrain.DCs, tLung.Monocyte, mLN.Monocyte) featured 
by higher expression of CD14/FCGR3A/FCN1/PPARG/
VCAN. 

Polarization represents the activation status of Macs, 
and there are typically two polarization states: the M1 
proinflammatory state, which is characterized by the 
expression of cell surface markers including CD80 (20)/
CD86 (21) and cytokines including interleukin 1 beta  

(IL1B) (22)/tumor necrosis factor (TNF) (23), and the M2 anti-
inflammatory state, which is characterized by the expression 
of cell surface markers including CD163 (24)/MRC1 (25) and 
cytokines including TGFB1 (26)/IL10 (27). In this study, we 
compared the expression levels of these marker genes among 
different myeloid subgroups in different samples, and the 
results are shown in Figure S2.

Macs in lung tissues were examined, and higher 
expression levels of the M1 markers CD80/IL1B and lower 
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Figure 2 Change in macrophage subtypes across different sample types. (A) Boxplots showing the changes in the ratios of different 
macrophage subtypes across different sample types. One-way ANOVA was performed in the comparison, and a “Bonferroni” method was 
used in the correction. *, P<0.05; **, P<0.01; ***, P<0.001. (B) Heatmap representing the expression levels of macrophage-related gene-
sets across different subgroups. nLung, paracancer normal lung samples; tLung, early-stage lung cancer samples; tL/B, advanced-stage lung 
cancer samples; nLN, normal lymph node samples; mLN, metastatic lymph node samples; mBrain, metastatic brain samples; ANOVA, 
analysis of variance. 
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expression levels of TNF were identified in tL/B samples. 
Lower expression levels of the M2 marker TGFB1 were 
found in tLung samples, and higher expression levels of 
IL10 were found in tLung and tL/B samples. Among aMacs 
in metastasis tissues, higher expression levels of the M1 
markers IL1B and TNF were found in mLN and mBrain 
samples. Higher expression of the M2 markers CD163 and 
MRC1 were found in mLN and mBrain samples, and higher 
expression levels of IL10 were found in mBrain samples.

Among Macs in lung tissues, higher expression levels 
of the M1 marker CD80 were found in tLung and tL/
B samples, and higher expression levels of IL1B and TNF 
were found in tL/B samples. Lower expression levels of the 
M2 marker MRC1 were found in tLung and tL/B samples. 
Among Macs in metastasis tissues, higher expression levels 
of the M1 markers CD86 and IL1B were found in mLN 
samples, and higher expression levels of TNF were found 
in tLung and tL/B samples. Higher expression levels of 
the M2 markers CD163 and IL10 were found in tLung and 
tL/B samples, and higher expression levels of MRC1 were 
found in mBrain samples.

Among Monos in lung tissues, higher expression levels 
of the M1 markers CD80, CD86, and TNF were found 
in tLung samples, and higher expression levels of the M2 
markers CD163, MRC1, and IL10 were found in tLung 
samples. Among Monos in metastasis tissues, higher 
expression levels of the M1 marker CD80 were found in 
tLung samples, and higher expression levels of IL1B and 
TNF were found in mLN and mBrain samples. Higher 
expression levels of the M2 markers CD163, MRC1, and 
IL10 were found in mLN and mBrain samples, and higher 
expression levels of TGFB1 were found in mLN samples.

Among cMacs in lung tissues, higher expression levels 
of the M1 marker CD80 were found in tLung samples. 
Higher expression levels of the M2 marker IL10 were found 
in tLung samples. Among cMacs from metastasis tissues, 
higher expression levels of the M1 markers CD86 and 
IL1B were found in mLN and mBrain samples, and higher 
expression levels of TNF were found in mLN samples. 
Higher expression levels of the M2 markers CD163, MRC1 
and IL10 were found in mLN and mBrain samples, and 
higher expression levels of TGFB1 were found in mLN 
samples.

IL10 is one type of immunosuppressive cytokines, 
and higher expression of IL10 was examined in aMacs 
as tumor progresses (nLung < tLung < tL/B), and in 
Monos/Macs during the metastasis (mLN > nLN), 

suggesting a contribution to the generation of a tumor 
immunosuppressive microenvironment.

Evolutionary relationship between different Mac subtypes

To examine the evolutionary relationship between different 
Mac subtypes (aMacs, cMacs, Monos, Macs), a pseudotime 
analysis was performed on cells from different samples, and 
a clear 3-branch trajectory pattern was found, as shown in 
Figure 3. Within this trajectory tree, state 1 was considered 
the root (Figure 3A,3B). Trees representing different 
subgroup sources and sample sources are shown in Figure 
3C,3D.

As shown in Figure 3E, most of the Monos resided in 
the state 1 branch, most of the aMacs resided in the state 2 
branch, and most of the Macs resided in the state 3 branch. 
To screen for featured genes during pseudotime changes, 
we compared the gene expression profiles of highly variable 
genes among these 3 states, and the results are shown in 
Figure 4A. These genes were further divided into 6 groups 
using “ward.D2” method, and the GO enrichment results 
are listed in Figure 4B. Group 1 genes were highly expressed 
in state 2 cells, and these genes were enriched in functions 
such as “mitotic nuclear division” and “antigen processing 
and presentation of exogenous peptide antigen”. Group 
2 genes were also highly expressed in state 2 cells and 
these genes were enriched in functions such as “leukocyte 
migration” and “response to hypoxia”. Group 3 genes were 
highly expressed in state 3 cells (Macs), and these genes 
were enriched in “antigen processing and presentation of 
peptide antigen” and “myeloid cell differentiation”. Group 
4 and 5 genes were highly expressed in state 1 cells, and 
these genes were enriched in functions such as “cytoplasmic 
translation” and “response to lipopolysaccharide”. Group 
6 genes were highly expressed in state 1 cells and state 2 
cells, and these genes were enriched in functions such as 
“regulation of hemopoiesis” and “regulation of myeloid cell 
differentiation”.

We also performed gene set variation analysis (GSVA) 
on all these GO biological process (BP) enriched terms 
to subgroups from all sample origins, and the results are 
illustrated in Figure 5. “Mitotic nuclear division” term had 
higher scores in cMac subgroups, suggesting a duplication 
process in these cells; “antigen processing and presentation” 
related terms had higher scores in DC and Mac subgroups, 
suggesting an activation process of T lymphocytes of these 
cells; certain metabolic processes such as “cholesterol 
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Figure 3 Evolutionary relationships among different macrophage subtypes. (A) Trajectory tree showing the pseudotime results. (B) 
Trajectory tree showing different states. (C) Trajectory tree showing the distribution patterns of different macrophage subtypes. (D) 
Trajectory tree showing the distribution patterns of macrophages from different sample types. (E) Trajectory trees showing the distribution 
patterns of cells of specific macrophage subtypes from different sample types. nLung, paracancer normal lung samples; tLung, early-stage 
lung cancer samples; tL/B, advanced-stage lung cancer samples; nLN, normal lymph node samples; mLN, metastatic lymph node samples; 
mBrain, metastatic brain samples; Mono, monocytes; Mac, macrophages; aMac, alveolar macrophages; cMac, cycling macrophages.

metabolic process”, “secondary alcohol metabolic process”, 
“sterol metabolic process”, “alcohol metabolic process”, 
and “fatty acid metabolic process” were activated in aMac 
subgroups. Expression profiles of genes involved in these 
metabolic processes are examined and illustrated in Figure 
S3. We further examined other metabolism related Kyoto 
Encyclopedia of Genes and Genomes (KEGG) terms across 
all subgroups, and the results are illustrated in Figure S4. 
Consistent with GO BP terms, most of the metabolism 

related KEGG terms had higher scores in aMac subgroups.

Regulation of myeloid components through LR interactions

There were five cytokines in Group 3 genes: CCL18 
(encoding C-C motif chemokine ligand 18), CXCL16 
(encoding CXC motif chemokine ligand 16), CXCL5 
(encoding C-X-C motif chemokine ligand 5), FAM3B 
(encoding FAM3 metabolism regulating signaling molecule 
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Figure 4 Monocyte-macrophage differentiation characteristics. (A) Heatmap showing the relative expression levels of the top 1,000 
differentially expressed genes. (B) GO biological process enrichment results of genes from the 6 groups. GO, Gene Ontology; MHC, major 
histocompatibility complex.

B), and GRN (encoding granulin precursor). The relative 
expression levels of these cytokines among different 
myeloid components from different samples are shown in 

Figure 6 (left panel). Higher CCL18 expression was found 
in Macs from tLung samples than in nLung samples and in 
cMacs from mLN and mBrain samples compared to nLN 
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Figure 5 GSVA results of different subgroups. Heatmap representing the GSVA scores of enriched GO biological process items across 
different subgroups. MHC, major histocompatibility complex; nLung, paracancer normal lung samples; tLung, early-stage lung cancer 
samples; tL/B, advanced-stage lung cancer samples; nLN, normal lymph node samples; mLN, metastatic lymph node samples; mBrain, 
metastatic brain samples; GSVA, gene set variation analysis; GO, Gene Ontology. 

samples. Higher CXCL16 expression was found in Monos 
from tLung samples than nLung samples and in cMacs 
from mLN and mBrain samples compared to nLN samples. 
Higher CXCL5 expression was found in aMacs from mLN 
samples than nLN samples. Higher FAM3B expression was 
found in aMacs from mBrain samples than nLung samples 
and in cMacs from mBrain samples compared to nLN 
samples. Higher GRN expression was found in Macs from 
tLung samples than nLung samples, in Monos from tLung 
samples compared to nLung samples, and in cMacs from 
mLN and mBrain samples compared to nLN samples.

The expression levels of receptors corresponding to these 
ligands were also examined (Figure 6 right panel). Regarding 
CXCR6 (encoding C-X-C motif chemokine receptor 6, 
receptor of CXCL16), increased expression was found in 

Macs from tLung samples and mLN samples, in Monos 
from tLung samples, mLN samples and mBrain samples. 
Regarding CXCR2 (encoding C-X-C motif chemokine 
receptor 2, receptor of CXCL5), increased expression was 
found in aMacs from mBrain samples, in Macs from tLung 
samples, mLN samples and mBrain samples, Monos from 
mLN samples, cMacs from mLN and mBrain samples. 
Regarding ATP1B3 (encoding ATPase Na+/K+ transport 
subunit beta 3, receptor of GRN), increased expression was 
found in Macs from mBrain samples, in Monos from mLN 
and mBrain samples, and in cMacs from mLN and mBrain 
samples. Regarding EGFR (encoding EGFR, receptor 
of GRN), increased expression was found in Macs from 
tLung and tL/B samples, and in Monos from mLN and 
mBrain samples. Regarding GPC1 (encoding glypican 1, 
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Figure 6 Boxplot showing the relative expression levels of cytokines (left) and their corresponding receptors (right) across different sample 
types. One-way ANOVA was performed in the comparison, and a “Bonferroni” method was used in the correction. *, P<0.05; **, P<0.01; 
***, P<0.001. aMac, alveolar macrophages; Mac, macrophages; Mono, monocytes; cMac, cycling macrophages; nLung, paracancer normal 
lung samples; tLung, early-stage lung cancer samples; tL/B, advanced-stage lung cancer samples; nLN, normal lymph node samples; mLN, 
metastatic lymph node samples; mBrain, metastatic brain samples; ANOVA, analysis of variance.

receptor of GRN), increased expression was found in cMacs 
from mLN samples, in Macs from tLung samples, tL/
B samples, mLN samples and mBrain samples, in Monos 
from tLung samples, mLN samples and mBrain samples. 
Regarding NF2 (encoding neurofibromin 2, receptor of 
GRN), increased expression was found in aMacs from mLN 
samples. Regarding PKP2 (encoding plakophilin 2, receptor 
of GRN), increased expression was found in Macs from 
mLN and mBrain samples, and in Monos from mBrain 
samples.

The interaction intensity was also calculated and 
compared among subgroup combinations, as shown in 

Figure 7. Most of the interactions had higher intensities 
in tumor (tLung, tL/B) samples and metastasis (mLN and 
mBrain) samples. Specifically, higher intensities of CCL18-
CCR8/CXCL16-CXCR6 were found in Mac subtypes in 
tLung samples, suggesting that these two interactions might 
play roles in early-stage lung cancer. Higher intensities 
of GRN-EGFR were found in Mac subtypes of tL/B and 
mBrain samples, suggesting that this interaction might a 
play role in advanced-stage lung cancer. Higher intensities 
of GRN-PKP2 were found in tLung and tL/B samples, 
suggesting that this interaction might play a role in lung 
cancer progression. GRN-GNB2/GRN-ATP1B3 interactions 
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had increased intensities in all tumor and metastasis 
samples, suggesting that these interactions might be related 
to lung cancer progression and metastasis.

Potential correlation between secreted phosphoprotein 1 
(SPP1+) Macs and LUAD progression

The existence of SPP1+ Macs have been found pan-cancer 

wide, and in this study, we also explored the expression 
of SPP1 in myeloid subgroups, as shown in Figure 8A. 
SPP1 had the highest expression values in Macs from tL/
B samples, and the expression of SPP1 increased in Macs 
with the progression of LUAD (tL/B > tLung > nLung). 
We further screened for co-expressing genes with SPP1 
in Macs, and 9 genes (including GAPDH/LDHA/ISG15/
LSP1/IFI6/TPI1/MIF/LY6E/ALOX5AP) showed a Pearson 
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correlation score of over 0.4 (Figure 8B). Among these 
9 genes, 8 of them (except for ALOX5AP) had increased 
expressions corresponding to LUAD progression, as shown 
in Figure 8C. 

Regarding these overexpressed genes, Chen et al. 
reported encoding lactate dehydrogenase A (LDHA) 
could alleviate reactive oxygen species (ROS) and induce 
M2 Mac polarization (28); Chen et al. (29) found that 
encoding interferon-stimulated gene 15 (ISG15) could 
promote immune suppression by inducing a Mac M2-
phenotype; Kwon et al. showed that encoding leukocyte-
specific protein 1 (LSP1) could affect migration and 
infiltration of T cells into tumor in mouse (30); Liu et al. (31)  
reported that interferon alpha inducible protein 6 (IFI6) 
could promote the progression of esophageal squamous cell 
carcinoma through regulating ROS; Liu et al. (32) found 
that overexpression of encoding triosephosphate isomerase 1 
(TPI1) could promote LUAD and enhance chemoresistance; 
encoding macrophage inhibitory factor (MIF) has been 
found involved in many types of cancers including LUAD, 

and overexpression of MIF is associated with angiogenesis 
and tumor metastasis (33). All the above findings confirm the 
relevance of these genes to tumor progression and deserves 
more attention in the future research.

Discussion

In this study, we systematically compared changes in 
myeloid components, especially Mac-related subgroups, 
during the progression and metastasis of LUAD through 
scRNAseq analysis. We found that the proportion of 
aMacs gradually decreased with the progression of lung 
cancer (Figure 2A), while the expression of M1 marker 
genes significantly increased in aMacs from tL/B samples  
(Figure 2B), suggesting the antitumor function of these 
aMacs, which is consistent with previous findings, as 
reviewed in Almatroodi et al. (34).

Macs or tumor-associated macrophages (TAMs) also 
originate from blood Monos and are recruited to tumor 
sites through a series of chemoattractant signals, such as  
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CCL2 (35). We found increased proportions of Macs and 
Monos as the tumor progressed (Figure 2A). Interestingly, 
lower expression of M1 markers such as IL1B/TNF and 
higher expression of M2 markers such as CD163/MRC1/
IL10 were found in Macs and Monos from mBrain samples 
than those from metastatic lymph node samples, suggesting 
that an M2 polarization process might contribute to lung 
cancer brain metastases. Further pseudotime analysis 
revealed a Mono-Mac differentiation trajectory track, 
as shown in Figure 3 (state 1 to state 3). Monos were 
enriched in functions such as “cytokine-mediated signaling 
pathway” and “response to lipopolysaccharide”, suggesting 
a chemotaxis process and M1-polarization process during 
differentiation. Macs were enriched in functions such as 
“lipid localization” and “lipid transport”. Lipid metabolic 
reprogramming has been considered a relevant feature 
during lung cancer progression (36,37), and our results 
further confirmed this process.

Macs can reshape their TMEs through cytokine secretion 
(38,39). In this study, we further explored the regulatory 
relationships among different Mac subtypes and identified 
9 cytokine-receptor pairs that Macs could use to regulate 
the surrounding myeloid cells. Among them, CCL18 could 
cause M2 polarization of Monos (40), and CCL18 secreted 
by M2 Macs could further promote the migration and 
invasion of cancer cells (41). CXCL16 could promote M2-
Mac infiltration (42), which might contribute to the increase 
in Macs during lung cancer progression. Regarding GRN, 
Nielsen et al. reported that Mac-secreted granulin could 
promote metastasis in pancreatic cancer (43), and Quaranta 
et al. further clarified that granulin promoted metastasis 
in pancreatic cancer by contributing to cytotoxic T-cell 
exhaustion (44). Our results identified several regulatory 
interactions among myeloid components through Mac-
derived granulin, suggesting that this regulation might also 
contribute to metastasis progression in lung cancer.

Conclusions

In summary, scRNAseq analysis revealed the characteristics 
of Mac subtypes during lung cancer progression and 
metastasis. Moreover, LR analysis identified several 
interactions that tumor-enriched Macs used to regulate 
their surrounding Mac subtypes. Our results shed light on 
the changes in the tumor immune microenvironment of 
lung cancer and provide potential therapeutic targets for 
future treatments.
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Supplementary

Figure S1 Cell type characteristics of each sample type. From left to right: UMAP plot showing the distribution patterns of all cell 
subgroups, bar plot showing the number of cells in each cell subgroup, UMAP plot showing the sample sources of all cell profiles, and bar 
plot showing the ratios of sample origins in each cell subgroup. (A) nLung: paracancer normal lung samples. (B) tLung: early-stage lung 
cancer samples. (C) tL/B: advanced-stage lung cancer samples. (D) nLN: normal lymph node samples. (E) mLN: metastatic lymph node 
samples. (F) mBrain: metastatic brain samples. UMAP, Uniform Manifold Approximation and Projection; T/NK, T and natural killer cells; 
MAST, Mast cells; NA, not applied. 
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Figure S2 Boxplots showing the relative expression levels of M1 and M2 markers across different sample types. One-way ANOVA was 
performed in the comparison, and a “Bonferroni” method was used in the correction. *, P<0.05; **, P<0.01; ***, P<0.001. nLung, paracancer 
normal lung samples; tLung, early-stage lung cancer samples; mBrain, metastatic brain samples; mLN, metastatic lymph node samples; tL/B, 
advanced-stage lung cancer samples; nLN, normal lymph node samples.
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Figure S3 Heatmap representing the expression levels of metabolic related genes across different subgroups.

Figure S4 Heatmap representing the GSVA scores of metabolism related KEGG items across different subgroups.


