Utility of cardiac magnetic resonance for evaluation of mitral regurgitation prior to mitral valve surgery

Neil K. Mehta, Jiwon Kim, Jonathan Y. Siden, Sara Rodriguez-Diego, Javid Alakbarli, Antonino Di Franco, Jonathan W. Weinsaft


Mitral regurgitation (MR) is a common cause of morbidity worldwide and an accepted indication for interventional therapies which aim to reduce or resolve adverse clinical outcomes associated with MR. Cardiac magnetic resonance (CMR) provides highly accurate means of assessing MR, including a variety of approaches that can measure MR based on quantitative flow. Additionally, CMR is widely accepted as a reference standard for cardiac chamber quantification, enabling reliable detection of subtle changes in cardiac chamber size and function so as to guide decision-making regarding timing of mitral valve directed therapies. Beyond geometric imaging, CMR enables tissue characterization of ischemia and infarction in the left ventricular (LV) myocardium as well as within the mitral valve apparatus, thus enabling identification of structural substrates for MR. This review provides an overview of established and emerging CMR approaches to measure valvular regurgitation, including relative utility of different approaches for patients with primary or secondary MR. Clinical outcomes studies are discussed with focus on data demonstrating advantages of CMR for guiding diagnosis, risk stratification, and management of patients with known or suspected MR. Comparative data is reviewed with focus on diagnostic performance of CMR in comparison to conventional assessment via echocardiography (echo). Emerging literature is reviewed concerning potential new approaches that utilize CMR tissue characterization to guide clinical decision-making in order to improve therapeutic outcomes and clinical prognosis for patients with MR.