Molecular biology of lung cancer
Review Article

肺癌分子生物学

Wendy A. Cooper1,2, David C. L. Lam3, Sandra A. O’Toole1,4,5, John D. Minna6

1Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia;2School of Medicine, University of Western Sydney, NSW, Australia;3Department of Medicine, University of Hong Kong, Hong Kong SAR, China;4Kinghorn Cancer Centre and Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia;5Sydney Medical School, University of Sydney, NSW, Australia;6Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Texas, USA

Corresponding to: Associate Professor Wendy A. Cooper. Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW, Australia. Email: wendy.cooper@sswahs.nsw.gov.au.

摘要:在肺癌的发病特征中,遗传多样性出现较多,而高频率突变相对较少。这些遗传学改变常常影响肿瘤相关信号通路的共同组分。近年来,随着人们对肺癌的分子生物学认识的深入,基于个体肿瘤的基因型肺腺癌(ADC)的诊断和治疗得以发展。新技术可识别包括肺腺癌和肺鳞癌(SCC)在内的关键性靶点基因的异常,其中已检测到突变基因包括v-Ki-ras2 Kirsten鼠类肉瘤毒性致癌同源体(KRAS)、表皮生长因子受体(EGFR)、BRAF 和与之平行的磷脂酰肌醇3-激酶(PI3K)转导通路癌基因以及最近研究的MET和HER2;同时可能在转染中基因重排(RET)过程中发生的ALK, ROS1基因的结构重排均为治疗提供了新的靶点。基因扩增是激活癌基因的另一重要机制, 如肺腺癌中MET以及肺鳞癌中的纤维母细胞生长因子受体1(FGFR1)和网柄菌凝素结构域受体2(DDR2)基因的扩增。值得注意的是,这些基因的变异与吸烟状态、特定种族和性别差异相关,这可能为研究肿瘤发生的机制以及肺癌发生与发展过程中宿主因素的作用提供了新的视角。随着对TP53, PTEN, RB1, LKB11和p16/CDKN2A基因改变的报道,肿瘤抑制基因在肺癌发生中的作用也逐渐被认识。综上所述,肺癌中识别重要的生物基因改变,即原癌基因的激活与抑癌基因的失活可能会为肿瘤提供进一步的治疗机会,同时为拥有较差预后的患者提高其疾病的预后提供帮助。

关键词: 肺癌;突变;分子病理学;癌基因;肿瘤抑制基因


Submitted Jul 19, 2013. Accepted for publication Aug 01, 2013.

doi: 10.3978/j.issn.2072-1439.2013.08.03


引言

肺癌的分子学特征具有复杂性和异质性。对遗传学、表观遗传学及蛋白组学等多个学科层面上分子改变和其功能影响的深入理解,有助于我们研究肺癌的诊断方法、治疗手段及预后检测。肺癌的发展是一个多步骤过程,包括多种多样的基因遗传学与表观遗传学的异常,特别是促癌相关基因通路的激活和抑瘤相关基因通路的失活。多种多样的信号通路包括肺癌发生的分子机制的进一步研究对于治疗策略的发展(如靶向调控异常的分子信号及其激活的下游通路)至关重要[1]。促使肿瘤生长的特定基因改变与其提供的治疗靶点在肺腺癌(ADC)中已明确定义,但是在肺鳞癌(SCC)的分子学研究中越来越重视探索新的潜在治疗靶点。同其他恶性肿瘤类似,肺癌的发生发展包括生长促进蛋白的激活[如:v-Ki-ras2 Kirsten鼠类肉瘤毒性致癌同源体(KRAS)、表皮生长因子受体(EGFR)、BRAF、MEK-1、HER2、MET、ALK和转染中基因重排(RET)]和抑癌基因的失活[如P53、与张力蛋白同源的磷酸酶基因(PTEN)、LKB-1][1]。癌基因的激活与基因扩增或信号通路中的基因异常变化(如点突变和结构重排)致使信号失调有关。当细胞的生存依赖于持续激活的异常信号时[2,3],我们称这种现象为致癌基因成瘾性,而这种基因往往是靶向疗法的理想位点。超过50%的ADC的致癌驱动基因突变已确定,几乎总是与其他驱动基因突变相互排斥[4,5]。由癌基因和抑癌基因调节的信号通路通常与参与肿瘤形成的其他通路相互交叉连通。在疾病进展的自然病程和治疗干预后的选择压力下,肿瘤基因突变的演变往往增加了疾病的复杂性。

肺癌存在极大的遗传多样性,在所有肿瘤中其包含了最大量肿瘤相关的基因遗传变异[1]。肺癌分子生物学的研究得益于新一代的测序技术,它提供了检测肿瘤基因组或外显子组的一系列综合方法。最近一项大规模研究检测了31类非小细胞肺癌(NSCLC)的外显子序列,发现了727种在文献中或者COSMIC数据库中未报道过的突变的基因,提示肺癌具有高度复杂的基因组[6]。基因组的相关研究早已证实肺癌中KRAS,EGFR和BRAF基因普遍存在变异,但新近研究的肺癌的潜在靶点JAK2、ERBB4[8]、RET[9-11]、纤维母细胞生长因子受体1(FGFR1)[12]、网柄菌凝素结构域受体2(DDR2)[13]等基因现也被证实存在着低频率但反复发生的突变异常。虽然上述这些研究提供了肺癌中基因变异较为全面的描述,但如何从众多基因突变中检测出生物相关驱动基因突变仍是今后研究面对的挑战。一系列不同的基因变异影响但拥有共同通路的肺癌中,高频发突变的相对缺乏突显了其在分子生物学上所具有的异质性和复杂性,也是今后肺癌个体化治疗所面对的挑战。

在本综述中,我们通过探讨肺癌中最常变异和临床最相关的癌基因和抑癌基因,深入对肺癌的分子病理学的认识,从而为肺癌的临床治疗策略提供思路与参考。


KRAS

KRAS基因是RAS基因家族中人类肿瘤相关的三种原癌基因(KRAS、NRAS和HRAS)之一,编码的G蛋白,在调节细胞增殖、分化和生长的信号转导通路的调控中起着关键作用[14]。在正常的静止细胞中,Ras蛋白与二磷酸鸟苷(GDP)结合处于其非活性状态,而当上游的生长因子受体激活时,与三磷酸鸟苷(GTP)结合转为其活性状态。激活的Ras-GTP随后结合并激活若干下游的信号传导通路,包括丝裂原激活蛋白激酶(MAPK)、RAS/RAF/MEK/MAPK通路和PI3-K[PI3K/AKT/哺乳动物雷帕霉素靶蛋白]通路[15]。KRAS通过介导包括EGFR在内的各种生长因子受体及规避对生长因子调节信号所需要的蛋白的激活而发挥重要作用。基因突变改变了GTPase的蛋白活性,阻碍了活性RAS-GTP向非活性的GDP之间的转变,导致多种下游促进生长的通路信号传递增强[15]。RAS/RAF/MEK/MAPK信号转导级联通路在多种肺癌中发挥重要作用,其中每188个样本中,有132个样本至少存在一种基因通路的突变,而突变的基因最多见的为KRAS。

在ADC中,KRAS癌基因突变是最常见的变异类型,发生率为25%~40%[4,5,7,16-18],而HRAS 和NRAS基因突变却很罕见[17]。ADC的KARS基因突变的分布差异很可能与种群的不同有关,与亚裔人相比,西方人肺腺癌患者KRAS基因发生突变的比例更高[19-22],同时男性吸烟患者KRAS基因突变也较为常见[7,18,22]。而在ADC未吸烟患者中,KRAS基因突变率仅为0~15% [16,23]。另外,在SCCs和小细胞肺癌中KRAS突变也很罕见[17,24]。对188例SCCs患者的基因组研究分析发现,仅有
1例患者的61位密码子存在KRAS突变[12]。肺腺癌中的KRAS基因突变主要是单个氨基酸的替换,集中发生在第12位密码子上,其他也发生在较少见的13位和61位密码子上[14,17]。 在吸烟的患者中最常见的KRAS突变是(G→T)颠换突变(~84%),而(G→A)颠换突变在非吸烟患者中很普遍[16]

KRAS基因变异与驱动基因突变是相一致的,但他们并不与EGFR基因突变同时发生[5,7,21,22],尽管也会有特例[18]。一项荟萃分析显示存在KRAS突变的肿瘤常常对EGFR酪氨酸激酶抑制剂(TKIs)存在治疗抵抗[25],因为KRAS突变可以引起EGFR下游通路的激活。研究表明不同的KRAS基因突变的蛋白往往预测不同的临床意义。有趣的是,BATTLE实验 (肺癌靶向清除治疗的二期生物标志物集成方法)的数据表明与其他KRAS基因突变或野生型KRAS相比,G12C型或G12V型突变的患者拥有更短的疾病无进展生存期[26]。此外,由于特异性突变引起蛋白的构型改变致使其与下游蛋白调节因子的结合能力发生改变,使得不同氨基酸的置换引起不同信号通路的激活(PI3-K、MEK-Gly12Asp、Ral-Gly12Cys/突变体的Gly12Val)[26]。因此,进行肺癌靶向治疗和临床试验设计时,要仔细评估特异基因突变的临床和治疗意义。虽然肺癌中高频率的KRAS突变可作为理想的治疗靶点,然而相关靶向药物的临床试验却不尽如人意。


EGFR

EGFR基因异常改变参与包括NSCLC在内的多种肿瘤的发病过程。EGFR编码酪氨酸激酶,属于跨膜受体,由细胞外的配体结合区域和细胞内的酪氨酸激酶活性区域组成[27]。通过与配体表皮生长因子连接,致使受体同EGFR家族的其他成员产生同质或者异质二聚作用,激活酪氨酸激酶结构域[28,29]。EGFR可诱导的信号转导通路包括PI3K/AKT/mTOR通路,RAS/RAF//MAPK通路和JAK/STAT通路等[28-30]。EGFR参与调节恶性肿瘤的多种功能例如细胞的增殖、存活、分化、新生血管形成、侵袭和转移等[29,30]。EGFR基因突变可导致体外肺上皮细胞中酪氨酸激酶激活[30,31]和癌性转化[31]。将诱导表达的最常见的EGFR突变基因转入小鼠模型,结果小鼠出现多发的ADC,而且其对小分子抑制剂敏感[32]。其他增强EGFR信号通路的机制包括蛋白表达增加或基因拷贝数增多[33,34]

EGFR基因突变在未选择的西方患者的发生比例约为10%~15%[5,21,35,36],而在亚裔人群中则为30%~40%[19,37,38]。两者发病率不同的部分原因可能是人种差异,但是与不同研究中使用的突变分析技术的敏感性也有关系。在NSCLC中,EGFR突变发生在酪氨酸激酶区域的前面4个外显子中,最常见的是外显子19 的缺失(约45%),该处存在20多个变异体,其中delE746-A750 位点基因突变最多发生。另一种最常见的EGFR突变为错义突变,尤其在L858R位点,其主要是外显子2l中的一个核苷酸位点突变 ,而导致密码子858处的精氨酸转变为亮氨酸(发生率约为40%)。然而,一项队列研究发现,在澳大利亚早期肺癌患者中,14%的EGFR突变发生于外显子18位,而L858R突变仅占EGFR突变的29% [5]。此外,还有一些较少见的突变包括外显子20 的插入突变(占5%~10%),这其中有很多变异体往往与EGFR相关的酪氨酸激酶抑制剂抵抗相关[22,39]

在肺癌中,几乎所有的EGFR突变都发生在ADC中[19,21,40,41],但是在肺腺鳞癌中偶尔也能看到。EGFR突变并不完全发生在无吸烟史的年轻女性患者中[7,19,21,22,37,40]。此外,EGFR突变很少发生在单纯的SCCs中[24,42]。通过对188例SCCs患者的全基因组分析发现,仅有2例存在EGFR突变,且都是L861G位点突变[12]。尽管SCCs中EGFR突变很少见,但参与EGFR基因的胞外域调控的变异体-Ⅲ突变,拷贝数增加和蛋白过度表达在SCCs中发生的比例要高于ADCs[43]

对EGFR酪氨酸激酶抑制剂抵抗的患者其EGFR继发突变的出现或者克隆性选择,最常见的突变位点是外显子20中的T790M,其将更大的蛋氨酸替代苏氨酸[44],从而干扰了EGFR与酪氨酸激酶抑制剂的结合。在获得性TKI抵抗的患者中,大约50%出现T790M突变[41,44]。有意思的是,在一项队列研究中,我们发现外显子20位点突变包括与对EGFR TKI治疗抵抗相关的T790M突变,在EGFR突变的患者中占29%[5]。不抑制EGFR而通过扩增MET激活PI3K通路等途径激活其下游通路也能够产生EGFR-TKI抵抗[45]


BRAF

BRAF基因编码丝氨酸/苏氨酸蛋白激酶,此酶是KRAS下游的效应蛋白,并能激活参与调节细胞增殖和生长的MAPK信号转导通路[46]。活化的BRAF可使下游调节因子MEK2和MEK1磷酸化,进而激活ERK1和ERK2,参与调节生长调控蛋白例如c-JUN和ELK1[14]。激活的BRAF突变可增加激酶活性(体外表达转化活性)[46]

尽管BRAF突变常见于黑色素瘤中[46],而在NSCLC中发生率仅约为3%[18,46-50]。NSCLC中的BRAF突变与黑色素瘤和结肠直肠癌不同的是,V600E突变(影响蛋白激酶结构域)所占比例较少。在ADC中,外显子15的V600E突变占BRAF突变比例多达约50%,其次是由外显子11的G469A突变和外显子15的D594G突变引起。NSCLC中的一些BRAF突变多发生在激酶结构域(如V600E、D594G和L596R),而其他突变发生在基因激活结构域的G环上(如G465V和G468A)[46]。由于BRAF和KRAS基因都是EGFR介导的信号转导通路的一部分,因此这些基因的突变存在相互排斥,却在转化的下游信号通路上保持一致,这一点就不足为奇了。BRAF基因突变经常发生在ADC中[48]。非V600E的BRAF基因突变与目前或既往吸烟患者有关,而V600E的BRAF基因突变常发生在女性非吸烟者中[48,50]。BRAF突变由于其在靶向治疗的有效性,目前已作为黑色素瘤治疗的重要靶向位点,然而在NSCLC中其相关研究较少[51]


MEK

丝裂原活化蛋白激酶MEK1(又称为MAPK1)是一种丝氨酸–苏氨酸激酶作为活化RAS的下游靶点而发挥重要作用。MEK1可激活BRAF下游的MAPK2和MAPK3[14]。NSCLC患者中很少检测到MEK1突变,有研究发现107例ADC患者中,仅有2例可检测到外显子2(与激酶结构域无关)发生突变[52]。在体外,这些突变与其他驱动基因突变相互排斥,但与功能获得密切相关[52]


MET

促癌基因MET位于7号染色体的q21-q31上,编码膜酪氨酸激酶受体,又称为肝细胞生长因子受体[53]。其通过结合配体肝细胞生长因子,发生二聚作用和激酶活化,并激活多种下游信号通路包括RAS/RAF/MEK/MAPK通路、PI3K/AKT通路和c-SRC激酶通路[53]。在接受治疗的NSCLC患者中,大约1%~7%的患者出现MET基因扩增[54-57],而另一研究发现21%的患者存在基因扩增[58]。与ADC相比,SCC中MET拷贝数增加或许更为常见,且与KRAS突变相互排斥[56,58]。MET基因扩增可导致MET蛋白表达过量,激活下游信号转导通路。MET基因的致癌作用在体外被证实是通过基因扩增,并与受体磷酸化,激活PI3K/AKT通路及对MET抑制作用敏感相关[45,59]。MET扩增是继发EGFR-TKI抵抗现象的一个重要机制,在获得性抵抗的患者中此作用的激酶转换出现几率约为20%[45,54,55]。在此方案中,MET扩增促发并维持PI3K/AKT信号通路,而绕过被TKIs 阻断的EGFR[45],提示了抑制MET可能是克服TKI抵抗的一种方法。而MET突变也很少见,仅在3%~5%的ADC患者中出现过。


HER2

人类表皮生长因子受体2基因(HER2/ERBB2)编码膜结合糖蛋白——酪氨酸激酶,是ERBB受体家族成员之一,与EGFR区域相关。与其他ERBB受体成员不同的是,它不直接结合配体,但是却能与受体家族结合配体的其他受体蛋白形成二聚体[60]
活化后可激活一系列的信号转导通路包括PI3K、MAPK和JAK/STAT通路[61]。HER2基因激活仅发生在一小部分肺癌患者中,其中HER2过度表达者约占20%,而在NSCLC中基因扩增者约占2%[62],基因突变者约占1.6%~4% [63-65]。HER2基因突变常发生在外显子20处,插入3~12个碱基对[63]。转基因小鼠模型的体内实验表明,HER2基因的致癌作用与肺腺鳞癌的发生密切相关,包括HER2突变和对小分子抑制剂的敏感[66]。大多数ADC患者可以检测出HER2基因异常改
[63-65],且突变发生在EGFR和 KRAS为野生型的肿瘤中[63,64],同时在相关研究中发现HER2基因异常与女性、亚洲人种、非吸烟状态等因素相关,这与EGFR突变肿瘤的临床特点类似。


PI3K/AKT/mTOR

PI3K/AKT/mTOR信号通路是参与调控细胞增殖、存活、分化、黏附和运动等生物学过程的重要信号转导通路[67,68]。NSCLC和小细胞癌中可检测出该通路的异常变化[69,70]。而该通路的激活依赖多种膜酪氨酸激酶受体的活化,包括EGFR、HER2、胰岛素样生长因子受体、血管内皮生长因子受体和血小板衍生生长因子受体[71,72]。活化的酪氨酸激酶受体将PI3K招募到细胞膜上,然后PI3K使细胞膜上的PIP2磷酸化为PIP3[磷脂酰肌醇4,5-二磷酸(PIP2)变为磷脂酰肌醇3,4,5-三磷酸(PIP3)]。然后PIP3转而招募丝氨酸/苏氨酸激酶AKT至胞膜上,3-磷酸肌醇依赖的激酶1(PI3激酶)将其磷酸化。mTOR是一种丝氨酸/苏氨酸激酶,AKT的下游作用底物[72]。活化的AKT可激活多种靶点包括结节性硬化症2和bcl 2相关的死亡程序,参与细胞增殖和生长[71]。此外,还与包括RAS/RAF/MEK(Rat sarcoma/ rapidly accelerated fibrosarcoma/MAPK或者Erk激酶)在内的其他通路有相互作用,当与RAS相互作用时可直接激活PI3K[72]

PI3K/AKT/mTOR通路在多种肿瘤中表达下调,其中发生在50%~70%的NSCLC[7,71]。在癌症基因组图谱项目中,发现有47%的SCCs出现包括PI3K通路在内的变异[12]。肺癌形成过程中,各种各样的机制诱导通路的激活,包括EGFR、KRAS、PI3K或AKT 基因突变[68,71],PIK3CA基因扩增或者抑癌基因PTEN的负向调控缺失。

PI3K蛋白家族(磷脂酰肌醇3-激酶)是一种细胞内脂质激酶,其主要的催化亚基p110α同型体是由PIK3CA基因编码[71]。PIK3CA基因突变和扩增可导致不依赖配体的通路激活[73,74]。PIK3CA基因突变主要发生在催化中心区域,在约1%~3%的NSCLCs 中可检测出[7,73,75],而且与ADCs相比,PIK3CA基因突变在SCC中更常见。与其他致癌驱动基因突变不同,PIK3CA突变的发生与EGFR或KRAS突变相关[5,73,75],提示他们并非是真正的驱动基因突变。然而,体外实验中,研究PIK3CA基因突变或拷贝数增加的肺癌细胞系发现,其PI3激酶活性对小分子抑制剂的敏感性增
[73],而在小鼠模型的体内实验中,发现PIK3CA基因突变参与ADC的形成,暗示其具有致癌活性[74]。在NSCLC中,特别是SCCs中,可能也能检测出PIK3CA扩增[73,76],而且在小细胞癌细胞系中报道约有5%出现PIK3CA拷贝数的增
[73]。尽管发生率不高,但AKT的突变也会激活PI3K/AKT/mTOR通路,在NSCLC(特别是SCCs)中发生率约为0.5%~2%[5,7,77]


ALK

在肺癌的多种亚型中,受体酪氨酸激酶ALK重排最常导致细胞内激酶域与棘皮动物微管相关蛋白4(EML4)的氨基末端区域发生融合[78-80]。这种重排是由于2号染色体短臂的易位,即最常见的变异体由EML4 的内含子13和ALK{ALK [inv[2](p21; p23)]}的内含子19发生融合形成[79]。由于EML4基因长度的不同,出现多种EML4-ALK融合变异体,其中最常见的类型是EML4外显子1-13和ALK外显子20-29的融合[78,81,82]。最近在ALK基因重排子集中,发现一些不同的可形成融合的基因(<1%的病例),如KIF5B(驱动蛋白家族成员5b)、TFG(TRK-融合基因)和KLC-1(驱动蛋白轻链1)
[83,84]。在体外实验中,致癌的EML4-ALK融合蛋白具有活化激酶作用,可增强功能活性;在体内实验中,表达EML4-ALK蛋白的小鼠可诱发形成多种对ALK抑制剂很敏感的ADC[85]。激活的ALK通过RAS/RAF/MAPK1、PI3K/AKT和JAK3-STAT3通路参与细胞增殖和抑制凋亡的调控[82]

ALK重排在NSCLC中的发生率约为4% [86],尽管有些研究报道了更低的发生率[5,87]。该现象在非吸烟或少量吸烟的年轻女性ADC患者中更为常见[78,87-91],几乎都发生在ADC患者中[90]。ALK重排与EGFR和KRAS突变相互排斥[5,87,91,92],也有与EGFR突变同时出现的病例报道,可作为TKI抵抗现象的机制之一[78,93-95]。在一些病例中,继发ALK点突变和EGFR信号激活证实了酪氨酸激酶抑制剂克卓替尼在抑制ALK过程中会产生药物抵抗[81,93]


ROS1

ROS1是一种原癌基因,位于6号染色体q22,编码跨膜酪氨酸激酶受体,与ALK的蛋白激酶域具有较高的同源性[96]。ROS1活化可激活多种信号通路:PI3K/AKT/mTOR通路、STAT3通路和RAS/MAPK/ERK通路[96]。2007年,应用磷酸蛋白组学技术,大规模筛查肺癌酪氨酸激酶活性,发现在NSCLC细胞系中ROS1融合率为1/41,而患者样本中ROS1融合率为1/150 (分别是SLC34A2-ROS1和CD74-ROS1)[83]。随后,应用全基因组和转录组测序技术,在非吸烟的腺癌患者中新发现了一种KDELR2- ROS1框内融合[8]。在两项大型研究中,应用FISH实验技术检测ADCs中ROS1重排的发生率分为18/694 (2.6%)[97]和13/1116(1.2%)[98]。多种5’参与融合的伴侣基因在ROS1基因重排中被检测到,包括FIG、KDELR2、TPM3、SDC4、LRIG3、EZR、SLC34A2和CD74,但即使这些伴侣基因与融合激酶的致癌作用有关,它们在其中发挥的具体作用还尚未清楚[8,83,98]。有意思的是,与ALK重排相似[90],ROS1重排也是在年轻、非吸烟者或亚洲种族中更常见[97]。而且,体外实验和早期临床试验证实存在ROS1重排的肺癌患者对激酶抑制剂(包括ALK/MET抑制剂克卓替尼等)敏感[97]


RET

RET基因位于10号染色体的q11.2,编码受体酪氨酸激酶,其与神经嵴发育相关。RET变异一直被认为在甲状腺乳头状癌和髓样癌中发挥作用[99],但是,直到最近才在少数肺癌患者中发现RET的激活与染色体重排相关[9-11]。易位将有功能的RET激酶结构域从外显子12-20到KIF5B(驱动蛋白5B及基因)融合起来,其中在染色体10上大小为10Mb的RET,编码卷曲螺旋域,参与细胞器运输[9,10]。应用大规模平行测序技术检测发现,ADC中KIF5B-RET融合的发生率为1%~2% [10,11],而且现在也已发现其与EGFR、KRAS 和ALK等其他驱动基因突变相互排斥。在一项未吸烟或轻度吸烟者的高选择性队列研究中,发现在其他驱动基因的野生型突变(如EGFR、KRAS、ALK、HER2、BRAF和ROS1)的ADC中,10/159(6.3%)的患者出现RET重排[11]。同ALK和ROS1相似,RET重排似乎也与非吸烟的ADC患者密切相关[9-11]。重要的是,多激酶抑制剂对RET有效,而且体外实验发现表达KIF5B-RET融合的细胞系对RET抑制剂敏感[10,11]


FGFR1

SCCs中可发现,包括SOX、PDGFRA[12]和FGFR1[12,100] 在内的许多体细胞基因扩增现象。FGFR1是一种膜受体酪氨酸激酶,通过激活MAPK和PI3K通路[101],调节细胞增殖[101]。体外实验发现,FGFR1扩增对于对小分子抑制剂敏感的NSCLC细胞系具有致癌作用[102]。约20%肺鳞癌可见FGFR1扩增,而这在ADCs中很少见[100,102]


DDR2

最近,对SCCs的全部蛋白激酶组测序发现,3.8%的患者检测出DDR2基因突变[13]。DDR2编码膜结合受体酪氨酸激酶,可与胶原蛋白结合,参与调节细胞的增殖和存活[103]。在体外,DDR2突变与致癌作用相关,并对抑制剂达沙替尼敏感[13]


肿瘤抑制基因

肿瘤抑制基因参与正常细胞生长的负反馈调节。肿瘤抑制基因(TSG)功能缺失是肿瘤发生的一个重要机制,并且需要两个等位基因失活,正如二次突变假说中所阐述[104]。在一个等位基因中,单个基因常由于突变、表观遗传学沉默或其他异常而失活;而第二等位基因,常由于杂合性(LOH)缺失——据此染色体的部分区域缺失、非相互易位或者有丝分裂重组而失活。肺癌中,有些TSGs包括TP53、RB1(视网膜母细胞瘤1)、
STK11(丝氨酸-苏氨酸激酶11)、CDKN2A、FHIT、RASSF1A和PTEN[1,7,105]经常失活,而且在LOH研究中也常见这些基因所在的染色体区域图谱。例如,在肺癌中,常见等位基因缺失的区域包括已知的TSGs如TP53 (17p13)、RB (13q12)、p16(9p21)和PTEN(10q22)[105]。Ding等的一项研究显示[7],在数个以前并不明确在肺腺癌中起关键作用的TSGs中发现存在突变,包括TSG NF1基因(参与神经纤维瘤病1型),其在13种肿瘤中发生突变,并且TP53调节物ATM在13例患者中被检测到。


TP53

TP53位于17号染色体p13,编码一种核磷酸化蛋白,大小约为53 kDa,其可以识别和结合DNA损伤区域[106]并作为一种转录因子调控大量不同基因的表达。损伤的DNA或致癌性应激诱导TP53,通过促使细胞周期蛋白依赖性激酶抑制剂的表达导致细胞周期阻滞,从而促使DNA修复或凋亡的发生。TP53失活是伴有17号染色体p13(包含TP53位点)半合子缺失的肺癌的最重要的基因变异类型之一,其分别出现在约90%的小细胞癌和65%的NSCLC中[107]。报道TP53突变的失活状态(主要是DNA结合区域的错义突变)发生在80%~100%的小细胞肺癌中[108]。相比之下,一项纳入超过4000例NSCLC患者的荟萃分析发现,突变或者蛋白聚集的发生率仅为46.8%[109],其中相比ADC在SCC中更常见,并且与高的肿瘤分期、分级和男性更相关。作为癌症和基因组图谱(TCGA)项目的一部分,通过全基因组分析发现TP53突变在SCCs中的发生率约为81%[12]。Ding等[7]发现188例ADC患者中,58例出现TP53突变(45%)。在NSCLC中,TP53突变与吸烟史或烟草环境暴露相关[19,110]。不同类型的TP53突变表达谱在吸烟者和不吸烟者之间存在差异,而在吸烟相关的肿瘤中,G-T颠换的发生率明显高于G-C颠换(由于烟草中多环芳香烃引起),CpG二核苷酸G-A颠换较多见于非吸烟者[110,111]。一项汇总74项研究的荟萃分析显示通过蛋白表达或者突变分析表达异常的p53,在NSCLC患者中是一个不利的预后因素[112]。TP53基因突变也伴随着治疗抵抗[106]。并且其发生与EGFR和KRAS基因突变相关[19]


PTEN

PTEN基因位于10号染色体上,编码一种磷酸酯酶,通过去磷酸化PI-[3,4,5]-三磷酸盐抑制PI3K/AKT/mTOR信号通路[68]。PTEN抑癌作用的失活导致不依赖配体结合的AKT/蛋白激酶B无限制性的激活[68]。在NSCLC中,PTEN突变发生较少,仅占约5%[113];其中相比ADC,在SCC中更常见(10.2% vs. 1.7%),并且与吸烟史相关。而报道在约75%的NSCLC中的PTEN蛋白表达减少[114]


LKB1

LKB1(又称为STK11)是位于19号染色体p13上的TSG,编码一种能抑制mTOR的丝氨酸-苏氨酸激酶,并且与多种生物过程有关,包括细胞周期的调控,染色质重构,细胞极性和能量代谢等[115,116]。mTOR通路组成成分的降解(不包括KRAS基因突变)在ADCs中的发生率为30%[7]。LKB1/STK11的种系突变常见于黑斑息肉病[115]。在肺癌中,LKB1被多种体细胞突变或缺失所抑制,后将产生与LKB1失活相关的截短蛋白,这在肺腺癌中的发生率为11%~30% [7,117-119]
使LKB1成为继TP53和KRAS之后ADC中第三个最常见的基因变异。而与SCCs相比,LKB1失活现象在ADC中更常见[117,119]。研究表明在男性中[118,120],LKB1基因突变和吸烟史之间有关系[117],也发现了它与KRAS突变的相关性[117,118]


p16INK4A –cyclinD1-CDK4-RB通路

p16INK4A /RB信号通路调节细胞周期-G1期到
S期。RB1基因是一种肿瘤抑制基因,编码RB蛋白,通过结合转录因子E2F1,调节细胞周期G1/S转变。RB1是第一个在肺癌中被描述的肿瘤抑制基因[121],在约90%的小细胞肺癌中失活,而在NSCLC中的失活率仅为10%~15%[1]。在NSCLC中,由于周期蛋白D1,CDK4和细胞周期蛋白依赖性激酶抑制剂p16(CDKN2A)的改变,该通路通常会关闭[105]。p16INK4A抑制依赖细胞周期蛋白D1的RB蛋白的磷酸化,从而将细胞周期阻滞在G1/S检查
[122]。TCGA发现p16INK4A在约80%的NSCLC中失活[123,124],在72%的肺鳞癌中出现异常变化,其主要是通过纯合子缺失、甲基化或基因失活性突变发生[12]。此外由于基因扩增或者其他机制,细胞周期蛋白D1在约40%的NSCLC中过度表达[123]


肺癌中的分子靶点

如前所述,这些分子靶点现在已作为NSCLC的特征,临床上最常见的形式为EGFR突变和ALK重排[125]。在肺癌中,这些突变发病率在不同地区的患者之间存在差异[126]。在NSCLC中,EGFR突变在白种人中出现的几率为20%,而在亚洲人中则达40%[127]。NSCLC的这些特征的种族差异不单单局限于激活的EGFR基因突变中,在其他驱动基因的癌性突变谱(如ALK、KRAS、MET等)、组织学和肿瘤对治疗效果反应性中也显而易见[63,126,128]。在同一肿瘤中,一般这些驱动基因的突变相互排斥[126]。在亚裔ADC患者中,ALK重排约占7%[79]。存在EML4-ALK重排的肺癌患者对传统化疗或EGFR-酪氨酸激酶抑制剂不反应,而对特异性酪氨酸激酶抑制剂如克唑替尼敏感[129]。我们基于目前对NSCLC中EGFR突变和ALK基因重排的分子靶向治疗和相应靶向药物有效性的理解,在NSCLC中提出一种检测分子靶点的程序,如图1所示。它描绘了一种逐步检测不同靶点的方法,首先检测EGFR情况,如果为阴性,再判断ALK融合基因或其他适当的潜在靶向基因。

图1
图1 非小细胞肺癌中的基因靶点检测与治疗方案

在NSCLC的组织亚型中,腺癌占80%[130]。以前有研究发现ADC中有微乳头特点的组织亚型与激活的EGFR突变相关,因此提出NSCLC中出现的特异性突变实际上代表了肿瘤生物学的异质性及对治疗的敏感性[131]。然而,考虑到肺癌的组织学类型的异质性,组织学亚型难以作为唯一可靠的标记用于指导分子表型的判断和靶向治疗的选择[132,133]

靶向治疗癌性突变如EGFR和ALK能产生较好的初始治疗反应,或者至少会使疾病处于稳定状态。拥有EGFR突变的ADC对治疗的反应率为70%[134]。应用不同的酪氨酸激酶抑制剂,中位无进展生存期一般为9~11个月[135,136],之后大部分有EGFR突变的患者都存在疾病进展与药物抵抗的情况。发生的这些药物抵抗部分是由于继发突变的出现,通常是T790M的外显子20[137]。很难解释拥有预后良好且常见的EGFR突变(外显子19缺失和L858R)的肿瘤最终药物敏感性的缺失的原因,他们甚至没有获得继发性突变如T790M或其他不常见或预后不良的EGFR突变。这能体现出对非最优的治疗靶点和EGFR-相关肿瘤信号通路生物学的更进一步的理解,并且其他癌性突变将会改善药物的靶向性,给予患者对于治疗反应和预后更好的预测。


结论

识别EGFR 和ALK的驱动基因突变的测定预示着肺腺癌靶向治疗的一个新时代,而先进的测序技术为癌基因和肿瘤抑制基因在肺癌中分子异常的认识提供更为精细的视角[12,138-142]。这些研究识别了肺癌中一系列潜在的靶点基因变异,但也凸显了存在复杂性和异质性,这对于分子诊断和靶向治疗仍存在巨大的挑战。更多对于肺癌分子生物学和基因组学的探讨,给未来肺癌的治疗以希望。肺癌疗效的改善当然需要越来越多的以往较少驱动基因突变的识别和可识别多种治疗靶点的诊断方法。然而,驱动基因变异的识别也需要有效的靶向治疗的平行发展,而对于许多这种改变(如KRAS)的治疗尚未出现。靶向治疗抵抗日益成为被认可的问题,而基因组学分析或许会在机制方面提出极为重要的见解,进而提出合理的治疗方法。


Acknowledgements

Funding sources: Sydney Foundation for Medical Research; Hong Kong SK Yee Medical Foundation; Cancer Institute NSW Clinical Research Fellowship 10/1/07; Sydney Breast Cancer Foundation; Lifehouse at Royal Prince Alfred Hospital Grant; Lung Cancer SPORE P50CA70907.

Disclosure: WC has received honoraria from Pfizer Oncology. SOT is a member of the Roche Australia Molecular Pathology Advisory Board. The authors declare no other conflicts of interest.


References

  1. Larsen JE, Minna JD. Molecular biology of lung cancer: clinical implications. Clin Chest Med 2011;32:703-40. [PubMed]
  2. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129-39. [PubMed]
  3. Weinstein IB. Cancer. Addiction to oncogenes-the Achilles heal of cancer. Science 2002;297:63-4. [PubMed]
  4. Sequist LV, Heist RS, Shaw AT, et al. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann Oncol 2011;22:2616-24. [PubMed]
  5. Yip PY, Yu B, Cooper WA, et al. Patterns of DNA mutations and ALK rearrangement in resected node negative lung adenocarcinoma. J Thorac Oncol 2013;8:408-14. [PubMed]
  6. Liu P, Morrison C, Wang L, et al. Identification of somatic mutations in non-small cell lung carcinomas using whole exome sequencing. Carcinogenesis 2012;33:1270-6. [PubMed]
  7. Ding L, Getz G, Wheeler DA, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008;455:1069-75. [PubMed]
  8. Govindan R, Ding L, Griffith M, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 2012;150:1121-34. [PubMed]
  9. Ju YS, Lee WC, Shin JY, et al. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res 2012;22:436-45. [PubMed]
  10. Kohno T, Ichikawa H, Totoki Y, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med 2012;18:375-7. [PubMed]
  11. Lipson D, Capelletti M, Yelensky R, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 2012;18:382-4. [PubMed]
  12. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012;489:519-25. [PubMed]
  13. Hammerman PS, Sos ML, Ramos AH, et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov 2011;1:78-89. [PubMed]
  14. Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003;3:11-22. [PubMed]
  15. Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 2008;9:517-31. [PubMed]
  16. Riely GJ, Kris MG, Rosenbaum D, et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res 2008;14:5731-4. [PubMed]
  17. Rodenhuis S, Slebos RJ. Clinical significance of ras oncogene activation in human lung cancer. Cancer Res 1992;52:2665s-9s. [PubMed]
  18. Schmid K, Oehl N, Wrba F, et al. EGFR/KRAS/BRAF mutations in primary lung ADC and corresponding locoregional lymph node metastases. Clin Cancer Res 2009;15:4554-60. [PubMed]
  19. Kosaka T, Yatabe Y, Endoh H, et al. Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res 2004;64:8919-23. [PubMed]
  20. Mao C, Qiu LX, Liao RY, et al. KRAS mutations and resistance to EGFR-TKIs treatment in patients with non-small cell lung cancer: a meta-analysis of 22 studies. Lung cancer 2010;69:272-8. [PubMed]
  21. Shigematsu H, Lin L, Takahashi T, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 2005;97:339-46. [PubMed]
  22. Tam IY, Chung LP, Suen WS, et al. Distinct epidermal growth factor receptor and KRAS mutation patterns in non–small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clin Cancer Res 2006;12:1647-53. [PubMed]
  23. Subramanian J, Govindan R. Molecular genetics of lung cancer in people who have never smoked. Lancet Oncol 2008;9:676-82. [PubMed]
  24. Rekhtman N, Paik PK, Arcila ME, et al. Clarifying the spectrum of driver oncogene mutations in biomarker-verified squamous carcinoma of lung: lack of EGFR/KRAS and presence of PIK3CA/AKT1 mutations. Clin Cancer Res 2012;18:1167-76. [PubMed]
  25. Linardou H, Dahabreh IJ, Kanaloupiti D, et al. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer Lancet Oncol 2008;9:962-72. [PubMed]
  26. Ihle NT, Byers LA, Kim ES, et al. Effect of KRAS Oncogene Substitutions on Protein Behavior: Implications for Signaling and Clinical Outcome. J Natl Cancer Inst 2012;104:228-39. [PubMed]
  27. Prenzel N, Fischer OM, Streit S, et al. The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 2001;8:11-31. [PubMed]
  28. Scagliotti GV, Selvaggi G, Novello S, et al. The Biology of epidermal growth factor receptor in lung cancer. Clin Cancer Res 2004;10:4227s-32s. [PubMed]
  29. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2:127-37. [PubMed]
  30. Sordella R, Bell DW, Haber DA, et al. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 2004;305:1163-7. [PubMed]
  31. Greulich H, Chen TH, Feng W, et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med 2005;2:e313. [PubMed]
  32. Ji H, Li D, Chen L, et al. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 2006;9:485-95. [PubMed]
  33. Dahabreh IJ, Linardou H, Siannis F, et al. Somatic EGFR mutation and gene copy gain as predictive biomarkers for response to tyrosine kinase inhibitors in non–small cell lung cancer. Clin Cancer Res 2010;16:291-303. [PubMed]
  34. Okabe T, Okamoto I, Tamura K, et al. Differential constitutive activation of the epidermal growth factor receptor in non–small cell lung cancer cells bearing EGFR gene mutation and amplification. Cancer Res 2007;67:2046-53. [PubMed]
  35. Eberhard DA, Giaccone G, Johnson BE. Biomarkers of response to epidermal growth factor receptor inhibitors in non–small-cell lung cancer working group: standardization for use in the clinical trial setting. J Clin Oncol 2008;26:983-94. [PubMed]
  36. Russell PA, Barnett SA, Walkiewicz M, et al. Correlation of mutation status and survival with predominant histologic subtype according to the new IASLC/ATS/ERS lung adenocarcinoma classification in stage III (N2) patients. J Thorac Oncol 2013;8:461-8. [PubMed]
  37. Tokumo M, Toyooka S, Kiura K, et al. The relationship between epidermal growth factor receptor mutations and clinicopathologic features in non–small cell lung cancers. Clin Cancer Res 2005;11:1167-73. [PubMed]
  38. Yoshida K, Yatabe Y, Park JY, et al. Prospective validation for prediction of gefitinib sensitivity by epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer. J Thorac Oncol 2007;2:22-8. [PubMed]
  39. Yamamoto H, Toyooka S, Mitsudomi T. Impact of EGFR mutation analysis in non-small cell lung cancer. Lung cancer 2009;63:315-21. [PubMed]
  40. Marchetti A, Ardizzoni A, Papotti M, et al. Recommendations for the analysis of ALK gene rearrangements in non–small-cell lung cancer: a consensus of the Italian Association of Medical Oncology and the Italian Society of Pathology and Cytopathology. J Thorac Oncol 2013;8:352-8. [PubMed]
  41. Wu JY, Wu SG, Yang CH, et al. Lung cancer with epidermal growth factor receptor exon 20 mutations is associated with poor gefitinib treatment response. Clin Cancer Res 2008;14:4877-82. [PubMed]
  42. Ohtsuka K, Ohnishi H, Fujiwara M, et al. Abnormalities of epidermal growth factor receptor in lung squamous-cell carcinomas, adenosquamous carcinomas, and large-cell carcinomas: tyrosine kinase domain mutations are not rare in tumors with an adenocarcinoma component. Cancer 2007;109:741-50. [PubMed]
  43. Heist RS, Sequist LV, Engelman JA. Genetic changes in squamous cell lung cancer: a review. J Thorac Oncol 2012;7:924-33. [PubMed]
  44. Balak MN, Gong Y, Riely GJ, et al. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor–mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res 2006;12:6494-501. [PubMed]
  45. Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007;316:1039-43. [PubMed]
  46. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949-54. [PubMed]
  47. Brose MS, Volpe P, Feldman M, et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 2002;62:6997-7000. [PubMed]
  48. Marchetti A, Chen TH, Richards WG, et al. Clinical features and outcome of patients with non–small-cell lung cancer harboring BRAF mutations. J Clin Oncol 2011;29:3574-9. [PubMed]
  49. Naoki K, Chen T, Richards W, et al. Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res 2002;62:7001-3. [PubMed]
  50. Paik PK, Arcila ME, Fara M, et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol 2011;29:2046-51. [PubMed]
  51. Falchook GS, Long GV, Kurzrock R, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 2012;379:1893-901. [PubMed]
  52. Marks JL, Gong Y, Chitale D, et al. Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signalling pathwar genes in lung adenocarcinoma. Cancer Res 2008;68:5524-8. [PubMed]
  53. Sadiq AA, Salgia R. MET as a possible target for non–small-cell lung cancer. J Clin Oncol 2013;31:1089-96. [PubMed]
  54. Bean J, Brennan C, Shih JY, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci USA 2007;104:20932-7. [PubMed]
  55. Cappuzzo F, Marchetti A, Skokan M, et al. MET increased gene copy number negatively affects survival of surgically resected non–small-cell lung cancer patients. J Clin Oncol 2009;27:1667-74. [PubMed]
  56. Onozato R, Kosaka T, Kuwano H, et al. Activtion of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers. J Thorac Oncol 2009;4:5-11. [PubMed]
  57. Go H, Jeon YK, Park HJ, et al. High MET gene copy number leads to shorter survival in patients with non-small cell lung cancer. J Thorac Oncol 2010;5:305-13. [PubMed]
  58. Beau-Faller M, Ruppert AM, Voegeli AC, et al. MET gene copy number in non-small cell lung cancer: molecular analysis in a targeted tyrosine kinase inhibitor naive cohort. J Thorac Oncol 2008;3:331-9. [PubMed]
  59. Lutterbach B, Zeng Q, Davis LJ, et al. Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res 2007;67:2081-8. [PubMed]
  60. Tzahar E, Waterman H, Chen X, et al. A hierarchical network fo interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 1996;16:5276-87. [PubMed]
  61. Graus-Porta D, Beerli RR, Daly JM, et al. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 1997;16:1647-55. [PubMed]
  62. Heinmöller P, Gross C, Beyser K, et al. HER2 status in non-small cell lung cancer: results from patient screening for enrollment to a phase II study of herceptin. Clin Cancer Res 2003;9:5238-43. [PubMed]
  63. Shigematsu H, Takahashi T, Nomura M, et al. Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res 2005;65:1642-6. [PubMed]
  64. Stephens P, Hunter C, Bignell G, et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 2004;431:525-6. [PubMed]
  65. Tomizawa K, Suda K, Onozato R, et al. Prognostic and predictive implications of HER2/ERBB2/neu gene mutations in lung cancers. Lung Cancer 2011;74:139-44. [PubMed]
  66. Perera SA, Li D, Shimamura T, et al. HER2YVMA drives rapid development of adenosquamous lung tumors in mice that are sensitive to BIBW2992 and rapamycin combination therapy. Proc Natl Acad Sci 2009;106:474-9. [PubMed]
  67. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006;7:606-19. [PubMed]
  68. Cully M, You H, Levine AJ, et al. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 2006;6:184-92. [PubMed]
  69. Brognard J, Clark AS, Ni Y, et al. Akt/Protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 2001;61:3986-97. [PubMed]
  70. Tsurutani J, West KA, Sayyah J, et al. Inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway but not the MEK/ERK pathway attenuates laminin-mediated small cell lung cancer cellular survival and resistance to imatinib mesylate or chemotherapy. Cancer Res 2005;65:8423-32. [PubMed]
  71. Papadimitrakopoulou V. Development of PI3K/AKT/MTOR pathway inhibitors and their application in personalized therapy for non-small-cell lung cancer. J Thorac Oncol 2012;7:1315-26. [PubMed]
  72. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase-AKT pathway in human cancer. Nat Rev Cancer 2002;2:489-501. [PubMed]
  73. Yamamoto H, Shigematsu H, Nomura M, et al. PIK3CA mutations and copy number gains in human lung cancers. Cancer Res 2008;68:6913-21. [PubMed]
  74. Engelman JA, Chen L, Tan X, et al. Effective use of PI3K and MEK inhibitors to treat mutant K-ras G12D and PIK3CA H1047R murine lung cancers. Nat Med 2008;14:1351-6. [PubMed]
  75. Kawano O, Sasaki H, Endo K, et al. PIK3CA mutation status in Japanese lung cancer patients. Lung cancer 2006;54:209-15. [PubMed]
  76. Ji M, Guan H, Gao C, et al. Highly frequent promoter methylation and PIK3CA amplification in non-small cell lung cancer (NSCLC). BMC Cancer 2011;11:147. [PubMed]
  77. Malanga D, Scrima M, De Marco C, et al. Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung. Cell Cycle 2008;7:665-9. [PubMed]
  78. Koivunen JP, Mermel C, Zejnullahu K, et al. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res 2008;14:4275-83. [PubMed]
  79. Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007;448:561-6. [PubMed]
  80. Choi YL, Takeuchi K, Soda M, et al. Identification of novel isoform of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res 2008;68:4971-6. [PubMed]
  81. Choi YL, Soda M, Yamashati Y, et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 2010;363:1734-9. [PubMed]
  82. Shaw AT, Solomon B. Targeting anaplastic lymphoma kinase in lung cancer. Clin Cancer Res 2011;17:2081-6. [PubMed]
  83. Rikova K, Guo A, Zeng Q. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007;131:1190-203. [PubMed]
  84. Takeuchi K, Choi YL, Togashi Y, et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res 2009;15:3143-9. [PubMed]
  85. Soda M, Takada S, Takeuchi K, et al. A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci USA 2008;105:19893-7. [PubMed]
  86. Solomon B, Varella-Garcia M, Camidge DR. ALK gene rearrangements. A new therapeutic target in a molecularly defined subset of non-small cell lung cancer. J Thorac Oncol 2009;4:1450-4. [PubMed]
  87. Selinger CI, Rogers TM, Russell PA, et al. Testing for ALK rearrangement in lung adenocarcinoma-a multicenter comparison of immunohistochemistry and fluorescent in situ hybridization. Mod Pathol 2013. [Epub ahead of print]. [PubMed]
  88. Rodig SJ, Mino-Kenudson M, Dacic S, et al. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the Western population. Clin Cancer Res 2009;15:5216-23. [PubMed]
  89. Sakairi Y, Nakajima T, Yasufuku K, et al. EML4-ALK fusion gene assessment using metastatic lymph node samples obtained by endobronchial ultrasound-guided transbronchial needle aspiration. Clin Cancer Res 2010;16:4938-45. [PubMed]
  90. Shaw AT, Yeap BY, Mino-Kenudson M, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol 2009;27:4247-53. [PubMed]
  91. Wong DW, Leung EL, So KK, et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 2009;115:1723-33. [PubMed]
  92. Inamura K, Takeuchi K, Togashi Y, et al. EML4-ALK lung cancers are characterized by rare other mutations, a TTF-1 cell lineage, an acinar histology, and young onset. Mod Pathol 2009;22:508-15. [PubMed]
  93. Sasaki T, Koivunen J, Ogino A, et al. A novel ALK secondary mutation and EGFR signalling cause resistance to ALK kinase inhibitors. Cancer Res 2011;71:6051-60. [PubMed]
  94. Sholl LM, Weremowicz S, Gray SW, et al. Combined use of ALK immunohistochemistry and FISH for optimal etection of ALK-rearranged lung adenocarcinomas. J Thorac Oncol 2013;8:322-8. [PubMed]
  95. Tiseo M, Gelsomino F, Boggiani D, et al. EGFR and EML4-ALK gene mutations in NSCLC: A case report of erlotinib-resistant patient with both concomitant mutations. Lung cancer 2011;71:241-3. [PubMed]
  96. Chin LP, Soo RA, Soong R, et al. Targeting ROS1 with anaplastic lymphoma kinase inhibitors: a promising therapeutic strategy for a newly defined molecular subset of non–small-cell lung cancer. J Thorac Oncol 2012;7:1625-30. [PubMed]
  97. Bergethon K, Shaw AT, Ou SH, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 2012;30:863-70. [PubMed]
  98. Takeuchi K, Soda M, Togashi Y, et al. RET, ROS1 and ALK fusions in lung cancer. Nature Med 2012;18:378-81. [PubMed]
  99. Wells SA Jr, Santoro M. Targeting the RET pathway in thyroid cancer. Clin Cancer Res 2009;15:7119-23. [PubMed]
  100. Tran TN, Selinger CI, Kohonen-Corish MR, et al. Fibroblast Growth Factor Receptor 1 (FGFR1) copy number is an independent prognostic factor in non-small cell lung cancer. Lung Cancer 2013. [Epub ahead of print]. [PubMed]
  101. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 2010;10:116-29. [PubMed]
  102. Dutt A, Ramos AH, Hammerman PS, et al. Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PLoS One 2011;6:e20351. [PubMed]
  103. Ikeda K, Wang L, Torres R, et al. Discoidin domain receptor 2 interacts with Src and Shc following its activation by type I collagen. J Biol Chem 2002;277:19206-12. [PubMed]
  104. Knudson AG. Antioncogenes and human cancer. Proc Natl Acad Sci USA 1993;90:10914-21. [PubMed]
  105. Raso MG, Wistuba II. Molecular pathogenesis of early-stage non-small cell lung cancer and a proposal for tissue banking to facilitate identification of new biomarkers. J Thorac Oncol 2007;2:S128-35. [PubMed]
  106. Mogi A, Kuwano H. TP53 mutations in nonsmall cell lung cancer. J Biomed Biotech 2011;2011:583929.
  107. Wistuba II, Berry J, Behrens C, et al. Molecular changes in the bronchial epithelium of patients with small cell lung cancer. Clin Cancer Res 2000;6:2604-10. [PubMed]
  108. D’Amico D, Carbone D, Mitsudomi T, et al. High frequency of somatically aquired p53 mutatinos in small-cell lung cancer cell lines and tumors. Oncogene 1992;7:339-46. [PubMed]
  109. Tammemagi MC, McLaughlin JR, Bull SB. Meta-analyses of p53 tumor suppressor gene alterations and clinicopathological features in resected lung cancers. Cancer Epidemiol Biomarkers Prev 1999;8:625-34. [PubMed]
  110. Husgafvel-Pursiainen K, Boffetta P, Kannio A, et al. p53 mutations and exposure to environmental tobacco mmoke in a multicenter study on lung Cancer. Cancer Res 2000;60:2906-11. [PubMed]
  111. Takagi Y, Osada H, Kuroishi T, et al. p53 mutations in non-small-cell lung cancers occurring in individuals without a past history of actve smoking. Br J Cancer 1998;77:1568-72. [PubMed]
  112. Steels E, Paesmans M, Berghmans T, et al. Role of p53 as a prognostic factor for survival in lung cancer: a systematic review of the literature with a meta-analysis. Eur Respir J 2001;18:705-19. [PubMed]
  113. Jin G, Kim MJ, Jeon HS, et al. PTEN mutations and relationship to EGFR, ERBB2, KRAS, and TP53 mutations in non-small cell lung cancers. Lung cancer 2010;69:279-83. [PubMed]
  114. Marsit CJ, Zheng S, Aldape K, et al. PTEN expression in non–small-cell lung cancer: evaluating its relation to tumor characteristics, allelic loss, and epigenetic alteration. Hum Pathol 2005;36:768-76. [PubMed]
  115. Marignani PA. LKB1, the multitasking tumour suppressor kinase. J Clin Pathol 2005;58:15-9. [PubMed]
  116. Shaw RJ, Bardeesy N, Manning BD, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004;6:91-9. [PubMed]
  117. Koivunen JP, Kim J, Lee J, et al. Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasion but not Asian lung cancer patients. Br J Cancer 2008;99:245-52. [PubMed]
  118. Matsumoto S, Iwakawa R, Takahashi K, et al. Prevalence and specifcity of LKB1 genetic alterations in lung cancers. Oncogene 2007;26:5911-8. [PubMed]
  119. Sanchez-Cespedes M, Parrella P, Esteller M, et al. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 2002;62:3659-62. [PubMed]
  120. Onozato R, Kosaka T, Achiwa H, et al. LKB1 gene mutations in Japanese lung cancer patients. Cancer Sci 2007;98:1747-51. [PubMed]
  121. Harbour JW, Lai SL, Whang-Peng J, et al. Abnormalities in structure and epxression of the human retinoblastoma gene in SCLC. Science 1988;241:353-7. [PubMed]
  122. Trimarchi JM, Lees JA. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 2002;3:11-20. [PubMed]
  123. Brambilla E, Moro D, Gazzeri S, et al. Alterations of the expression of Rb, p16(INK4A) and cyclin D1 in non-small cell lung carcinoma and their clinical significance. J Pathol 1999;188:351-60. [PubMed]
  124. Otterson GA, Kratzke RA, Coxon A, et al. Absence of p16INK4 protein is restricted to the subset of lung cancer lines that retains wildtype RB. Oncogene 1994;9:3375-8. [PubMed]
  125. Pao W, Hutchinson KE. Chipping away at the lung cancer genome. Nat Med 2012;18:349-51. [PubMed]
  126. Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol 2011;12:175-80. [PubMed]
  127. Sriram KB, Larsen JE, Yang IA, et al. Genomic medicine in non-small cell lung cancer: paving the path to personalized care. Respirology 2011;16:257-63. [PubMed]
  128. Paik PK, Johnson ML, D’Angelo SP, et al. Driver mutations determine survival in smokers and never-smokers with stage IIIB/IV lung adenocarcinomas. Cancer 2012;118:5840-7. [PubMed]
  129. Shaw AT, Solomon B. Targeting anaplastic lymphoma kinase in lung cancer. Clin Cancer Res 2011;17:2081-6. [PubMed]
  130. Travis WD, Brambilla E, Riely GJ. New pathologic classification of lung cancer: relevance for clinical practice and clinical trials. J Clin Oncol 2013;31:992-1001. [PubMed]
  131. Motoi N, Szoke J, Riely GJ, et al. Lung adenocarcinoma: modification of the 2004 WHO mixed subtype to include the major histologic subtype suggests correlations between papillary and micropapillary adenocarcinoma subtypes, EGFR mutations and gene expression analysis. Am J Surg Pathol 2008;32:810-27. [PubMed]
  132. Zakowski MF, Hussain S, Pao W, et al. Morphologic features of adenocarcinoma of the lung predictive of response to the epidermal growth factor receptor kinase inhibitors erlotinib and gefitinib. Arch Pathol Lab Med 2009;133:470-7. [PubMed]
  133. Ohtsuka K, Ohnishi H, Fujiwara M, et al. Abnormalities of epidermal growth factor receptor in lung squamous-cell carcinomas, adenosquamous carcinomas, and large-cell carcinomas: tyrosine kinase domain mutations are not rare in tumors with an adenocarcinoma component. Cancer 2007;109:741-50. [PubMed]
  134. Mok T, Wu YL, Zhang L. A small step towards personalized medicine for non-small cell lung cancer. Discov Med 2009;8:227-31. [PubMed]
  135. Zhou C, Wu YL, Chen G, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 2011;12:735-42. [PubMed]
  136. Yang JC, Shih JY, Su WC, et al. Afatinib for patients with lung adenocarcinoma and epidermal growth factor receptor mutations (LUX-Lung 2): a phase 2 trial. Lancet Oncol 2012;13:539-48. [PubMed]
  137. Wu JY, Yu CJ, Chang YC, et al. Effectiveness of tyrosine kinase inhibitors on “uncommon” epidermal growth factor receptor mutations of unknown clinical significance in non-small cell lung cancer. Clin Cancer Res 2011;17:3812-21. [PubMed]
  138. Lee W, Jiang Z, Liu J, et al. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 2010;465:473-7. [PubMed]
  139. Pleasance ED, Stephens PJ, O'Meara S, et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 2010;463:184-90. [PubMed]
  140. Imielinski M, Berger AH, Hammerman PS, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 2012;150:1107-20. [PubMed]
  141. Peifer M, Fernández-Cuesta L, Sos ML, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 2012;44:1104-10. [PubMed]
  142. Rudin CM, Durinck S, Stawiski EW, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 2012;44:1111-6. [PubMed]

(译者:范博;校对:孟茂斌、王欢欢)

(本译文仅供学术交流,实际内容请以英文原文为准。)

Cite this article as: Cooper WA, Lam DCL, O’Toole SA, Minna JD. Molecular biology of lung cancer. J Thorac Dis 2013;5(S5):S479-S490. doi: 10.3978/j.issn.2072-1439.2013.08.03

Download Citation