Original Article


Radioactivity and lung cancer-mathematical models of radionuclide deposition in the human lungs

Robert Sturm

Abstract

The human respiratory tract is regarded as pathway for radionuclides and other hazardous airborne materials to enter the body. Radioactive particles inhaled and deposited in the lungs cause an irradiation of bronchial/alveolar tissues. At the worst, this results in a malignant cellular transformation and, as a consequence of that, the development of lung cancer. In general, naturally occurring radionuclides (e.g., 222Rn, 40K) are attached to so-called carrier aerosols. The aerodynamic diameters of such radioactively labeled particles generally vary between several nanometers (ultrafine particles) and few micrometers, whereby highest particle fractions adopt sizes around 100 nm. Theoretical simulations of radioactive particle deposition in the human lungs were based on a stochastic lung geometry and a particle transport/deposition model using the random-walk algorithm. Further a polydisperse carrier aerosol (diameter: 1 nm–10 μm, ρ ≈ 1 g cm-3) with irregularly shaped particles and the effect of breathing characteristics and certain respiratory parameters on the transport of radioactive particles to bronchial/alveolar tissues were considered. As clearly shown by the results of deposition modeling, distribution patterns of radiation doses mainly depend on the size of the carrier aerosol. Ultrafine (< 10 nm) and large (> 2 μm) aerosol particles are preferentially deposited in the extrathoracic and upper bronchial region, whereas aerosol particles with intermediate size (10 nm–2 μm) may penetrate to deeper lung regions, causing an enhanced damage of the alveolar tissue by the attached radionuclides.

Download Citation