A brief overview of thoracic surgery in the United States
Review Article on Thoracic Surgery Worldwide

美国胸外科现状简介

Catherine T. Byrd, Kiah M. Williams, Leah M. Backhus

Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA

Contributions: (I) Conception and design: All authors; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Leah M. Backhus, MD, MPH. Stanford University, 300 Pasteur Drive, Falk Building, Stanford, CA 94305, USA. Email: lbackhus@stanford.edu.

Submitted Sep 14, 2021. Accepted for publication Dec 09, 2021.

doi: 10.21037/jtd-21-1504


引言

美利坚合众国是一个拥有3.31亿人口的国家[1],由50个州组成并跨越380万平方英里[2],因而其民族、人种、社会经济、自然资源都具有高度的多样性。基于这个国家幅员辽阔和复杂的医疗服务系统,在美国胸外科存在着显著的不均衡性。本文将讲述胸外科在美国复杂的医疗体系下是如何运行的,以及如何成为一个合格的胸外科医生。我们还将讨论美国胸外科领域的优点和缺点,并介绍美国胸外科医生中最常见病种——肺癌的一些情况。

肺癌在美国男性和女性高发的癌症中均排名第二,也均为癌症相关死亡的首位原因[3]。2021年,美国预计将会有235760名新诊断的肺癌患者[4]。在这些新病例中,17.8%在确诊时为早期肺癌,22%为中期,剩下的56%则为晚期。Ⅰ期患者中的76.7%和Ⅱ期患者中的83.8%都接受手术治疗[5]


美国的医疗服务概述

在未充分了解医疗体系及其外部环境的情况下,我们无法对任何医学专业进行考量。现代美国医疗体系的发展演变贯穿了整个20世纪,目前主要是由无政府资助的私立机构负责提供,这就导致了多个类型的独立的医疗服务机构各自发展,虽然它们之间有时也互相合作[6]。总体上,私人诊所、营利性医院和机构、非营利性医院和政府出资资助的项目都纳入政府部门的管理框架内[7]

美国医疗服务的支出是非常复杂而且昂贵的。2019年,美国在医疗上投入了其国内生产总值(GDP)的17.7%(约3.8万亿美元)[8],这个占比在全球而言都是最高的[6]。医疗保险公司支付了大部分医疗费用(73%),其中的大部分用于临床治疗费用——31%用于支付住院治疗项目费用,20%用于支付医生和医院其他人员的费用[9]

美国的健康保险由私人出资和政府出资共同组成[10]。92%的美国人都有某种形式的医疗保险,最常见且覆盖最广的是私人出资的雇主保险(56.4%)。个人还可以通过联邦或州市场购买其他私人保险(10.2%)或统一服务(2.6%)。目前有一个非强制性的公共医疗保险项目,覆盖了约34%的总人口,其分为Medicare项目(针对65岁及以上或长期残疾的人)、Medicaid项目(针对65岁以下贫困线的人)和儿童健康保险项目(Children’s Health Insurance Program)。此外,政府还为美国退伍军人出资设立了独立的保险项目[10]

约有2900万人(占全美8%)没有健康保险[10]。这一百分比在通过《2010年患者保护和平价医疗法案》后从20%逐步下降至今[10]。该法案允许建立以州为基础的医疗保险交易所或以联邦政府为基础的市场,允许直接向消费者售卖私人保险。它还为各州提供了一种选择,将Medicare扩大到65岁以下、收入低于联邦贫困线133%的人群[11]

尽管美国在医疗保健方面投入了大量资金,但美国人的期望寿命还是低于许多其他工业化国家[10]。事实上2020年美国国民的预期寿命下降了1.5岁,为77.3岁(这一下降有74%与COVID-19有关)[12]。值得一提的是,在一项包括29个欧洲和美洲国家的调查中,有27个国家的预期寿命在2020年有所下降。然而在所有接受调查的国家中,美国的2019年至2020年的预期寿命下降幅度最大[13]。历史上美国民众的十大死因是心脏病、恶性肿瘤、意外事故、慢性下呼吸道疾病、脑血管疾病、阿尔兹海默症、糖尿病、流感/肺炎、肾病和自杀[14]。在恶性肿瘤中最致命的是肺癌,估计仅2021年就造成131880人死亡[3]


美国胸外科概述

美国胸外科医生负责胸部疾病的外科治疗和围手术期管理[15],病种包括肺气肿、吞咽障碍、胃食管反流疾病、肿瘤(肺、食管、胸壁、纵隔)、气管变异、膈肌疾病、需要移植的终末期心脏或肺部疾病以及良性胸壁异常[15,16]。良性胸壁疾病如漏斗胸,在美国多由儿科医生在患者青少年时期进行治疗。当成人漏斗胸复发或者一小部分患者需要继续矫正时,需由胸外科医生进行手术[16]。对于复发而需要矫正的患者,最好采用改良Ravitch手术,而接受首次治疗的成人多采用改良Nuss手术[16,17]

美国每年约有4000名心胸外科医生进行53万例普胸外科手术[18],这些胸外科医生大多数为男性(92%),平均年龄为56岁[19]。据估一个胸外科医生平均每年实施135台手术[18]。最常见的手术是电视胸腔镜(VATS)肺叶切除术,其次是VATS楔形切除、VATS胸膜剥脱术、腹腔镜食道旁疝修补术、Ivor-Lewis食管切除术(开放或微创),纵隔镜探查或活检,以及腹腔镜Nissen胃底切除术[20]。大多数胸外科医生在医院(44.8%)或大学附属医疗机构(33.6%)执业,其余的外科医生则受雇于私人诊所或政府[19]

美国大约有50%胸外科手术是由普外科医生进行的[21]。比较复杂的胸外科手术是由胸外科医生在大学附属医疗机构中施行的,而相对不复杂胸外科手术则多由普外科医生在地区医院实施[21]。Schipper等人[22]的一项调查研究发现,在任何临床工作场所,由胸外科医生进行的全肺切除术、肺叶切除术、局部肺切除术或胸膜剥脱术的患者死亡率明显低于普外科医生或主要进行心脏手术的心胸外科医生。然而,当进行了统计学校正之后,这一优势在全肺切除术和胸膜剥脱术中就不明显了,但在肺叶切除术、局部肺切除术中依然存在。此外,研究发现胸外科医生实施手术的总体并发症发生率也明显更低[22]。这可能与胸外科医生相比其他外科医生更倾向使用微创技术进行肺部手术有关(odds ratio 1.57,95% CI: 1.36–1.81)[23]。具体而言,与开放肺叶或肺段切除术相比,VATS肺叶切除术和VATS肺段切除术的并发症更少、30天死亡率更低、住院时间更短[23]


美国的胸外科手术训练

与许多国家不同的是,美国胸外科委员会(Cardiothoracic Surgery governed by the American Board of Thoracic Surgery,ABTS)管理下的心胸外科专业将胸外科和心外科结合起来进行培训。在美国,要想成为一名胸外科医生主要有三条途径[24]。传统途径:医学院毕业生完成5年的普通外科临床培训,然后进入2~3年心胸外科的专科培训,这些医生在普通外科方面可以获得美国外科委员会(American Board of Surgery)的认证,在胸外科方面可以获得ABTS的认证。第二种途径(I-6项目):学员在医学院毕业后立即进行6年的心胸外科课程, 他们只能获得ABTS颁发的胸外科认证。第三种途径(4+3):医学院毕业生在同一医院完成4年普通外科培训和3年心胸外科住院医师培训,这些医生也可以同时获得普通外科和胸外科的委员会认证。一些住院医师还考虑在培训期间申请额外的专业科研时间(通常为2年)。在I-6培训项目中,18%的住院医生被要求必须选择专业科研,60%的住院医生会选择选择专业科研,而17%的住院医生不会选择专业科研。在传统途径的受训者中,大约69%的人在普通外科培训期间已经进行了某种类型的科研[25]。无论研究时间长短,以及在所有三种训练模式下,住院医师都必须完成必要的病例数以达到他们预期的训练目标。

ABTS授予合格的申请人进行心外科和胸外科手术的资格。据统计,有30%~42%的心胸外科医生只从事胸外科手术,有31%~38%的心胸外科医生同时从事心外科和胸外科手术[26-28]。而在学术型的医学中心中,绝大多数的心胸外科医生必须专科化地从事心外科或者胸外科专业的临床工作而往往不能两者兼顾。

几项研究预测,到2035年美国心胸外科的劳动力将出现短缺。Moffatt-Bruce等人预计,从2010年到2035年,胸外科手术的年需求将增加61%,因为老年患者人口可能需要更多的手术治疗[18]。与此同时,从培训项目毕业的心胸外科医生数量将显著减少,加上现有医生人口的老龄化,造成了胸外科服务能力的可预见的供应短缺[18]

尽管胸外科专业培训的申请人数近来有所下降[29],目前仍是美国竞争最激烈的专业之一。在2021年,毕业于普通外科的住院医师有154人提出申请91个培训职位,其中的40%申请失败[30]。而在2019年的I-6项目中,有209个医学院毕业生提出申请竞争36个培训职位[31]

I-6项目的发展使得训练有素的心胸外科医生数量得以增加[32]。这可以解释自I-6项目开始以来传统途径职位数量减少的原因,即从2008年的130个传统路径职位到2021年的91个[30,32]。然而,考虑到预计将出现的心胸外科的劳动力短缺,需要重视从优秀的医学院毕业生和普通外科培训完成者中的招募和宣传[33,34,35]。尽管继续增加培训职位的数量将有助于解决劳动力短缺的问题,但也必须重视本专业的职业吸引力问题。2018年,26%的外科医生表示考虑离开这个专业,许多人表示这个专业需要占用太多的时间,他们感到很大的压力。也有人担忧专业指导不足和职业发展前景[36]。很明显,为了解决劳动力短缺问题,需要更多方法来招募新的胸外科医生,并同时改善对于处于职业生涯中期的胸外科医生的人文支持。


优点

美国的胸外科专业是将专业训练和创新技术结合的典范。其中采用的一种训练技术是模拟训练。胸外科主任协会(TSDA),一个心胸外科住院医师培训项目主任的合作组织,从2008年开始为心胸外科实习生提供训练项目[37]。目前,该项目由胸外科医生协会(Society of Thoracic Surgeons, STS)负责管理。该项目满足ABTS的考核要求,在胸外科技能方面进行一对一的培训,如支气管镜检查、纵隔镜检查、开放肺叶切除术和肺门解剖以及机器人手术[37]。全国范围内的模拟课程和部分住院医师项目的培训已经证明了其优势。参与培训者的ABTS认证考试通过率更高,并在真实的临床场景中表现更好[38]

此外,在TSDA指导下成立于1997年的胸外科住院医师协会(Thoracic Surgery Residents Association,TSRA),已成为北美心胸外科实习生的主要来源[39]。在过去的10年里,该协会出版了6本教材和5本参考指南,传播基本概念和外科技术。他们还通过博客(TSRA Podcast Series)传递来自心胸外科的前沿信息,由学员和主治医师来负责挑选临床问题撰写博客内容[39]


待改进之处

尽管美国在创新和医疗保健方面花费巨大,但其在效果方面仍然存在不平衡。例如,不同种族的预期寿命存在显著差别:西班牙裔社区的预期寿命为78.8岁;非西班牙裔白人社区为77.6岁,而非西班牙裔黑人社区为71.8岁[12]。在保险覆盖率方面,2019年西班牙裔人口未参保率为16.7%,黑人人口未参保率为9.6%,亚裔人口未参保率为6.2%,非西班牙裔白人人口未参保率为5.2%[10]。在坚持遵循指南要求的外科手术护理方面,少数族裔和生活在农村地区的人不太可能得到符合指南要求的护理,癌症相关的生存率也更低[40]

具体来说,在胸外科领域,种族居住隔离的增加与黑人患者肺癌死亡率较高相关(10%的差异)[41]。在经过了诊断时间、社会经济地位和婚姻状况的差异因素调整之后,肺癌死亡率在种族上仍然存在无法解释的差别[42]。与白人患者相比,黑人食管癌患者接受手术的可能性更低[43]。在接受了手术切除的食管癌患者中,经调整分析生存率降低不再与种族有关,但是与社会经济地位密切相关[44]。如前所述,由于美国医疗保健系统在各地区的差异巨大,因此很难在整个系统范围内进行改革提高以解决这种效果上的不平衡。


肺癌:美国胸外科最常见的疾病

据估计,在美国每年有222520例肺癌手术[18]。来自于Medicare项目(65岁及以上老年医疗保险人群)和STS协会数据库的数据显示,最常见的是肺叶切除术(68.2%)和楔形切除术(18.1%)[45],这些手术通常采用微创手术(VATS),有7%采用机器人技术完成[45,46]。平均手术时间为234~242分钟[45,47]。术后房性心律失常率14%~15%,需要输血8.5%,肺炎发生率4%,需要再插管率4%,需要再次手术率3%~4%,谵妄发生率3%,急性肾损伤发生率1%[45,47,48]。来自美国外科医生学会国家外科质量改善项目(American College of Surgeons National Surgical Quality Improvement Program database)数据库显示,由心胸外科医生进行肺解剖切除的肺癌患者的并发症发生率显著低于普通外科医生(adjusted odds ratio 0.82,P=0.011)[49],住院时间为3~7天,平均5天,手术死亡率为1.7%,平均住院总费用约为32 000美元[45,47]。然而,即使在纳入这个项目的人群之中,根据外科医生类别、医院规模、获得治疗的途径(诸如医院级别、影像水平、治疗后管理)和保险状况进行区分,临床结果也存在很大程度的差异。例如,保险状况甚至会影响早期肺癌患者接受手术的几率。将拥有私人保险人群作为参照组,拥有医疗保险人群和无保险人群均接受手术的几率明显较低(分别为0.53和0.50倍),显然这也与较低的5年总生存率相关[50]

在美国,早期肺癌患者的肿瘤特异性5年生存率为59.8%,中期患者为32.9%,晚期患者为6.3%[4]。而综合所有分期的肺癌患者肿瘤特异性5年生存率仅有21.7%[4]。据估计,2021年美国将有131 880人死于这种疾病。一些亚洲国家的5年生存率较高(日本为33%,韩国为25%)[51],这可能是与这些国家采取了筛查(对年轻患者和吸烟史较短的患者进行筛查)有关[52]。美国最近更新了筛查指南,与这些国家相类似。

尽管统计数据十分严峻,美国的肺癌死亡率自1991年以来一直在下降[3,4,53]。从预防健康的角度来看,这种改善部分归因于减少空气污染物法规的颁布、戒烟项目和肺癌筛查项目的实施[3,53]。美国预防服务工作组(U.S. Preventive Services Task Force, USPSTF)于2013年首次提出肺癌筛查建议[54-56]。根据国家肺部筛查试验(National Lung Screening Trial),经过12.3年的中位随访检查低剂量计算机断层扫描筛查,估计有23.3%的假阳性率和3.1%的过度诊断率,但肺癌死亡率的相对风险降低了20%。为了预防1例肺癌相关的死亡,需要进行筛查的人数是303人[56]。关于筛查指南有效性的研究发现,各国指南与7.9%~49.3%的假阳性率和0~67.2%的过度诊断率相关,但是没有影响生活质量,也未导致焦虑的增加[55]

USPSTF目前建议每年进行一次低剂量肺癌筛查。这一建议适用于50~80岁、有20包年吸烟史、目前吸烟或戒烟不到15年的人群[57]。该指南反映了最近的一项变化,即降低了纳入年龄和吸烟年数以增加符合条件的患者数量,从而使更多的人受益于筛查。2016年的数据显示,在USPSTF首次推荐筛查3年后,仅有2%的符合筛查条件的患者参与了筛查。然后直到2015年,Medicare才愿意支付筛查的影像费用[58]。六年后的现状,也就是2021年,我们看到了Medicare支付的肺癌筛查的效果。随着患者年龄达到纳入Medicare(年龄达到65岁)项目,确诊时I期肺癌的比例明显增加(从8.9%到19.1%),而IV期肺癌的比例明显下降(54.9%到41.4%), 这也与5年肿瘤特异性生存率的改善相关[59]。随着美国推进肺癌筛查,我们可能会看到肺癌死亡率的大幅下降。


结论

在美国,胸外科手术是在一个复杂而昂贵的医疗体系中进行的,同时存在着很大的医疗不平衡性。尽管如此,该领域仍在继续创新培训模式,以培养该领域未来的领军人才,为患者提供最好的服务。胸外科医生在治疗美国最致命的癌症——肺癌方面至关重要,而且总体而言,胸外科医生对这种疾病的治疗效果最好。展望未来,我们希望能够看到这种疾病死亡率能够持续下降。


Acknowledgments

Funding: This work was supported by the National Institute of Health (NIH) (No. R01 HL148185-01).


Footnote

Provenance and Peer Review: This article was commissioned by the Guest Editor (Alan D. L. Sihoe) for the series “Thoracic Surgery Worldwide” published in Journal of Thoracic Disease. The article has undergone external peer review.

Peer Review File: Available at https://jtd.amegroups.com/article/view/10.21037/jtd-21-1504/prf

Conflicts of Interest: The authors have completed the ICMJE uniform disclosure form (available at https://jtd.amegroups.com/article/view/10.21037/jtd-21-1504/coif). The series “Thoracic Surgery Worldwide” was commissioned by the editorial office without any funding or sponsorship. CB and LB report that this work was supported by the National Institute of Health (NIH). LB serves as VA Merit Award Principal Investigator, Director at Large, Board of Directors on Society of Thoracic Surgeons. She received consulting fees in Guidepoint Consulting. She serves on an advisory board for Johnson & Johnson for their engagement of Women in Surgery. There is no clinical interest. For Bristol Myers Squib she has participated in an expert panel to advise them regarding strategies to engage early stage lung cancer patients for immunotherapy. The authors have no other conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.


References

  1. Hartley C, Perry M, Rogers L. A Preliminary Analysis of U.S. and State-Level Results From the 2020 Census. US Census Bureau, 2021.
  2. Bureau UC. State Area Measurements and Internal Point Coordinates. The United States Census Bureau. Available online: https://www.census.gov/geographies/reference-files/2010/geo/state-area.html
  3. Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021. CA Cancer J Clin 2021;71:7-33. [Crossref] [PubMed]
  4. National Cancer Institute. SEER Cancer Stat Facts: Lung and Bronchus Cancer. SEER Cancer Stat Facts: Lung and Bronchus Cancer. 2021. Available online: https://seer.cancer.gov/statfacts/html/lungb.html
  5. Robinson D, Hawthorne S, Zhao L, et al. Treatment patterns in non-small-cell lung cancer in USA: results of the CancerMPact Survey 2018. Future Oncol 2020;16:255-62. [Crossref] [PubMed]
  6. Rice T, Rosenau P, Unruh LY, et al. United States of America: health system review. Health Syst Transit 2013;15:1-431. [PubMed]
  7. De Lew N, Greenberg G, Kinchen K. A layman’s guide to the U.S. health care system. Health Care Financ Rev 1992;14:151-69. [PubMed]
  8. NHE Fact Sheet|CMS. Available online: https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NHE-Fact-Sheet
  9. Centers for Medicare & Medicaid Services. Nation’s Health Dollar: Where it Came From, Where it Went. .S. Centers for Medicare & Medicaid Services, 2020. Available online: https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NationalHealthAccountsHistorical
  10. Keisler-Starkey K, Bunch LN. U.S. Census Bureau Current Population Reports, P60-271, Health Insurance Coverage in the United States: 2019. U.S. Government Publishing Office, 2020.
  11. French MT, Homer J, Gumus G, et al. Key Provisions of the Patient Protection and Affordable Care Act (ACA): A Systematic Review and Presentation of Early Research Findings. Health Serv Res 2016;51:1735-71. [Crossref] [PubMed]
  12. Arias E, Betzaida T-V, Ahmad F, et al. Provisional Life Expectancy Estimates for 2020. National Center for Health Statistics (U.S.), 2021. Available online: https://stacks.cdc.gov/view/cdc/107201
  13. Aburto JM, Schöley J, Kashnitsky I, et al. Quantifying impacts of the COVID-19 pandemic through life-expectancy losses: a population-level study of 29 countries. Int J Epidemiol 2021;dyab207.
  14. National Center for Health Statistics, Heron M. Deaths: Leading Causes for 2018. National Center for Health Statistics, 2021. Available online: https://stacks.cdc.gov/view/cdc/104186
  15. Association of American Medical Colleges. Thoracic Surgery- Careers in Medicine. AAMC Careers in Medicine, 2021. Available online: https://www.aamc.org/cim/explore-options/specialty-profiles/thoracic-surgery
  16. Luu TD, Kogon BE, Force SD, et al. Surgery for Recurrent Pectus Deformities. Ann Thorac Surg 2009;88:1627-31. [Crossref] [PubMed]
  17. Jaroszewski DE, Velazco CS. Minimally Invasive Pectus Excavatum Repair (MIRPE) | Elsevier Enhanced Reader. Oper Tech Thorac Cardiovasc Surg 2018;23:198-215. [Crossref]
  18. Moffatt-Bruce S, Crestanello J, Way DP, et al. Providing cardiothoracic services in 2035: Signs of trouble ahead. J Thorac Cardiovasc Surg 2018;155:824-9. [Crossref] [PubMed]
  19. Ikonomidis JS, Boden N, Atluri P. The Society of Thoracic Surgeons Thoracic Surgery Practice and Access Task Force—2019 Workforce Report. Ann Thorac Surg 2020;110:1082-90. [Crossref] [PubMed]
  20. Society of Thoracic Surgeons DCRI. STS General Thoracic Surgery Executive Summary. 2018. Available online: https://www.sts.org/sites/default/files/documents/STSThoracic-ExecutiveSummaryFall2018.pdf
  21. Cooke DT, Wisner DH. Who Performs Complex Noncardiac Thoracic Surgery in United States Academic Medical Centers? Ann Thorac Surg 2012;94:1060-4. [Crossref] [PubMed]
  22. Schipper PH, Diggs BS, Ungerleider RM, et al. The influence of surgeon specialty on outcomes in general thoracic surgery: a national sample 1996 to 2005. Ann Thorac Surg 2009;88:1566-72; discussion 1572-3. [Crossref] [PubMed]
  23. Mehta H, Osasona A, Shan Y, et al. Trends and Outcomes of Thoracoscopic Lobectomy or Segmentectomy: A National Surgical Quality Improvement Project Analysis. Semin Thorac Cardiovasc Surg 2018;30:350-9. [Crossref] [PubMed]
  24. The Thoracic Surgery Directors Association. CT Surgery Training Pathways | TSDA. 2012. Available online: https://tsda.org/the-tsda/ct-residency-programs/ct-surgery-training-pathways/
  25. Stephens EH, Shah AA, Robich MP, et al. The Future of the Academic Cardiothoracic Surgeon: Results of the TSRA/TSDA In-Training Examination Survey. Ann Thorac Surg 2016;102:643-50. [Crossref] [PubMed]
  26. Rosati CM, Koniaris LG, Molena D, et al. Characteristics of cardiothoracic surgeons practicing at the top-ranked US institutions. J Thorac Dis 2016;8:3232-44. [Crossref] [PubMed]
  27. Wood DE, Farjah F. Global Differences in the Training, Practice, and Interrelationship of Cardiac and Thoracic Surgeons. Ann Thorac Surg 2009;88:515-22.e5. [Crossref] [PubMed]
  28. Wood DE. Cardiothoracic surgery: A specialty divided or as one. J Thorac Cardiovasc Surg 2009;137:1-9. [Crossref] [PubMed]
  29. Moffatt-Bruce SD, Ross P, Williams TE. American Board of Thoracic Surgery examination: Fewer graduates, more failures. J Thorac Cardiovasc Surg 2014;147:1464-69. [Crossref] [PubMed]
  30. National Resident Matching Program. Match Results Statistics: Thoracic Surgery and Vascular Surgery -2021. National Resident Matching Program, 2021. Available online: https://mk0nrmp3oyqui6wqfm.kinstacdn.com/wp-content/uploads/2021/05/Thoracic-Surgery-and-Vascular-Surgery_AY2022.pdf
  31. Smood B, Nguyen SN, Kelly JJ, et al. Integrated cardiothoracic surgery: Developing a successful residency application. J Thorac Cardiovasc Surg 2020;160:167-74. [Crossref] [PubMed]
  32. Bui J, Bennett WC, Long J, et al. Recent Trends in Cardiothoracic Surgery Training: Data from the National Resident Matching Program. J Surg Educ 2021;78:672-8. [Crossref] [PubMed]
  33. Williams KM, Hironaka CE, Wang H, et al. Women in Thoracic Surgery Scholarship: Impact on Career Path and Interest in Cardiothoracic Surgery. Ann Thorac Surg 2021;112:302-7. [Crossref] [PubMed]
  34. Chan PG, Liang S, Smood B, et al. American Association for Thoracic Surgery Summer Intern Scholarship-Over a decade of experience. J Thorac Cardiovasc Surg 2021; Epub ahead of print. [Crossref] [PubMed]
  35. Ragalie WS, Termuhlen PM, Little AG. Changes in Thoracic Surgery Experience During General Surgery Residency: A Review of the Case Logs From the Accreditation Council for Graduate Medical Education. Ann Thorac Surg 2016;102:2095-8. [Crossref] [PubMed]
  36. Mahoney ST, Strassle PD, Schroen AT, et al. Survey of the US Surgeon Workforce: Practice Characteristics, Job Satisfaction, and Reasons for Leaving Surgery. J Am Coll Surg 2020;230:283-293.e1. [Crossref] [PubMed]
  37. Thoracic Surgery Directors Association. 2019 TSDA Boot Camp. Available online: https://tsda.org/the-tsda/boot-camp/boot-camp-archive/2019-tsda-boot-camp/
  38. Rowse PG, Dearani JA. Deliberate Practice and the Emerging Roles of Simulation in Thoracic Surgery. Thorac Surg Clin 2019;29:303-9. [Crossref] [PubMed]
  39. Brescia AA, Lou X, Louis C, et al. The Thoracic Surgery Residents Association: Past contributions, current efforts, and future directions. J Thorac Cardiovasc Surg. 2021;162:917-27.e5. [Crossref] [PubMed]
  40. Zahnd WE, Murphy C, Knoll M, et al. The Intersection of Rural Residence and Minority Race/Ethnicity in Cancer Disparities in the United States. Int J Environ Res Public Health 2021;18:1384. [Crossref] [PubMed]
  41. Hayanga AJ, Zeliadt SB, Backhus LM. Residential Segregation and Lung Cancer Mortality in the United States. JAMA Surg 2013;148:37-42. [Crossref] [PubMed]
  42. Ellis L, Canchola AJ, Spiegel D, et al. Racial and Ethnic Disparities in Cancer Survival: The Contribution of Tumor, Sociodemographic, Institutional, and Neighborhood Characteristics. J Clin Oncol 2018;36:25-33. [Crossref] [PubMed]
  43. Savitch SL, Grenda TR, Scott W, et al. Racial Disparities in Rates of Surgery for Esophageal Cancer: a Study from the National Cancer Database. J Gastrointest Surg 2021;25:581-92. [Crossref] [PubMed]
  44. Erhunmwunsee L, Gulack BC, Rushing C, et al. Socioeconomic Status, Not Race, Is Associated With Reduced Survival in Esophagectomy Patients. Ann Thorac Surg 2017;104:234-44. [Crossref] [PubMed]
  45. Cowper PA, Feng L, Kosinski AS, et al. Initial and Longitudinal Cost of Surgical Resection for Lung Cancer. Ann Thorac Surg 2021;111:1827-33. [Crossref] [PubMed]
  46. Phillips JD, Bostock IC, Hasson RM, et al. National practice trends for the surgical management of lung cancer in the CMS population: an atlas of care. J Thorac Dis 2019;11:S500-8. [Crossref] [PubMed]
  47. Medbery RL, Fernandez FG, Kosinski AS, et al. Costs Associated With Lobectomy for Lung Cancer: An Analysis Merging STS and Medicare Data. Ann Thorac Surg 2021;111:1781-90. [Crossref] [PubMed]
  48. Fernandez FG, Kosinski AS, Furnary AP, et al. Differential effects of operative complications on survival after surgery for primary lung cancer. J Thorac Cardiovasc Surg 2018;155:1254-1264.e1. [Crossref] [PubMed]
  49. Vossler JD, Abdul-Ghani A, Tsai PI, et al. Outcomes of Anatomic Lung Resection for Cancer Are Better When Performed by Cardiothoracic Surgeons. Ann Thorac Surg 2021;111:1004-11. [Crossref] [PubMed]
  50. Stokes SM, Wakeam E, Swords DS, et al. Impact of insurance status on receipt of definitive surgical therapy and posttreatment outcomes in early stage lung cancer. Surgery 2018;164:1287-93. [Crossref] [PubMed]
  51. Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival: analysis of individual records for 37,513,025 patients diagnosed with one of 18 cancers during 2000–2014 from 322 population-based registries in 71 countries (CONCORD-3). Lancet 2018;391:1023-75. [Crossref] [PubMed]
  52. Triphuridet N, Henschke C. Landscape on CT screening for lung cancer in Asia. Lung Cancer (Auckl) 2019;10:107-24. [Crossref] [PubMed]
  53. Yang D, Liu Y, Bai C, et al. Epidemiology of lung cancer and lung cancer screening programs in China and the United States. Cancer Lett 2020;468:82-7. [Crossref] [PubMed]
  54. Jonas DE, Reuland DS, Reddy SM, et al. Screening for Lung Cancer With Low-Dose Computed Tomography: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2021;325:971-87. [Crossref] [PubMed]
  55. Jonas DE, Reuland DS, Reddy SM, et al. Screening for Lung Cancer With Low-Dose Computed Tomography: An Evidence Review for the U.S. Preventive Services Task Force. Rockville (MD): Agency for Healthcare Research and Quality (US), 2021. (U.S. Preventive Services Task Force Evidence Syntheses, formerly Systematic Evidence Reviews). Available online: http://www.ncbi.nlm.nih.gov/books/NBK568573/
  56. Bradley SH, Shinkins B, Kennedy MP. What is the balance of benefits and harms for lung cancer screening with low-dose computed tomography? J R Soc Med 2021;114:164-70. [Crossref] [PubMed]
  57. US Preventive Services Task Force. Screening for Lung Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2021;325:962-70. [Crossref] [PubMed]
  58. Pham D, Bhandari S, Pinkston C, et al. Lung Cancer Screening Registry Reveals Low-dose CT Screening Remains Heavily Underutilized. Clin Lung Cancer 2020;21:e206-11. [Crossref] [PubMed]
  59. Patel DC, He H, Berry MF, et al. Cancer diagnoses and survival rise as 65-year-olds become Medicare-eligible. Cancer 2021;127:2302-10. [Crossref] [PubMed]
译者介绍
李修远
复旦大学上海医学院19级临床医学八年制学生,获2020-2021年度三等奖学金。立志于从事胸外科专业的临床工作与研究。(更新时间:2022-02-04)
审校介绍
汪灏
复旦大学附属中山医院胸外科副主任医师、中山医院科研处临床研究管理科科长,华盛顿大学医学中心(UWMC)访问学者,ESTS会员、EACTS会员、IASLC会员,以第一/通讯作者在JAMA SurgeryJTCVS等杂志发表论文15篇,ATM杂志编委、JTD杂志编委,在AATS、EACTS、ESTS、WCLC、OESO等国际学术会议报告8次,获得ESTS 2014年会青年医师最佳临床报告奖、AATS 2016年度访学奖金、OESO 2017年会优秀报告奖、JACS 2017年会优秀报告奖、2016年上海市科技进步奖二等奖(第2完成人),主持国家自然科学基金2项,获得实用新型专利1项(第1发明人)。(更新时间:2022-02-04)

(本译文仅供学术交流,实际内容请以英文原文为准。)

Cite this article as: Byrd CT, Williams KM, Backhus LM. A brief overview of thoracic surgery in the United States. J Thorac Dis 2022;14(1):218-226. doi: 10.21037/jtd-21-1504

Download Citation